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Automated retinal blood vessel segmentation is important for the early computer-aided diagnosis of some
ophthalmological diseases and cardiovascular disorders. Traditional supervised vessel segmentation methods
are usually based on pixel classification, which categorizes all pixels into vessel and non-vessel pixels. In this
paper, we propose a new retinal vessel segmentation method with the motivation to extract vessels based on vessel
block segmentation via cross-modality dictionary learning. For this, we first enhance the structural information
of vessels using multi-scale filtering. Then, cross-modality description and segmentation dictionaries are learned
to build the intrinsic relationship between the enhanced vessels and the labeled ground truth vessels for the
purpose of vessel segmentation. Also, effective pre-processing and post-processing are adopted to promote the
performance. Experimental results on three benchmark data sets demonstrate that the proposed method can
achieve good segmentation results. © 2018 Optical Society of America
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1. INTRODUCTION

Fundus images [1] are one type of medical images that contains
retinal vessel, optic disc, macula, and other ophthalmological
structures. They are widely used for the noninvasive diagnosis
of ophthalmological diseases such as age-related macular degen-
eration [2], diabetic retinopathy [3], glaucoma [4], etc. It is
known that diabetic retinopathy is the main cause for blind-
ness [5], which is closely related to retinal vascular structures
appearing as treelike branches originating from the optic disc.
In addition to ophthalmological diseases, since the retinal vessel
is the only vascular structure of the human blood circulation
system that can be observed noninvasively [6], some cardio-
vascular diseases such as stroke, hypertension, and arterioscle-
rosis can also be diagnosed by analyzing changes of diameter,
branch pattern, and tortuosity of retinal vessels. Moreover, the
vessel’s structural information can also be used to assist multi-
modal retinal image registration [7].

However, since manual annotation and measurement for
vessels by human experts is an extremely time-consuming
and experience-demanding task [8,9], automatic vessel seg-
mentation that can efficiently detect vessels captured by differ-
ent cameras becomes especially crucial to assist the diagnosis
of various ophthalmological and cardiovascular diseases.
Nevertheless, due to the distinctive characteristics of fundus
images, blood vessel segmentation is not a simple image

segmentation task. Although numerous attempts have been
made in the area of automated fundus vessel segmentation over
the last decades, this task is still active and challenging, and it
can be generally categorized into two classes: unsupervised
methods and supervised methods [10].

Unsupervised vessel segmentation methods do not need
to train models with the pre-labeled ground truth vessels,
such as filtering-based [11,12], morphological-processing-
based [13], vessel-tracking-based [14] and model-based tech-
niques [15,16]. Fraz et al. [17] developed a vascular tree
detection method that combines vessel skeleton extraction and
morphological filters to detect the vessels. Yu et al. [18] gen-
erated a vessel probability map using the Hessian matrix and
used local second-order entropy thresholding to segment the
vessels. Annunziata et al. [19] detected vessel structures using
a multi-scale Hessian filter approach after inpainting exudates.
Azzopardi et al. [20] introduced the combination of shifted fil-
ter responses (COSFIRE) to detect bar-shaped retinal vascular
structures. Zhao et al. [21] combined an active contour model
and compactness-based saliency detection to extract vessels
after a Retinex-based vascular enhancement. However, even
with their low complexity and high efficiency, the main disad-
vantage of the unsupervised methods is that the segmentation
accuracy will be slightly decreased when applied to pathological
retinal images.
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On the other hand, supervised methods, which need to train
a classifier to discriminate all pixels into vessel and non-vessel
categories, usually produce better performance than the unsu-
pervised methods. Using feature vectors extracted from the fun-
dus images and their ground-truth label information, a classifier
can be trained using the existing neural network (NN), support
vector machine (SVM), and random forest (RF) techniques.
Roychowdhury et al. [22] extracted two different vessels by
high-pass filtering and morphological processing to extract the
main vessels, and the remaining vessel pixels are classified by a
Gaussian mixture model (GMM) classifier. Aslani and Sarnel
[23] trained a random forests (RF) classifier with hybrid feature
vectors to classify vessel and non-vessel pixels. Ricci and Perfetti
[24] employed two orthogonal line detectors to construct a fea-
ture vector for the vascular classification using a SVM. Li et al.
[25] learned a cross-modality transformation mapping function
between the original retinal images and the vessel labels by
deep neural network. However, the disadvantage of supervised
methods is the poor generalization capability in predicting the
segmented vessels across different databases.

Even though fundus blood vessel segmentation is an attrac-
tive topic, how to construct an effective and efficient segmen-
tation solution is still an open issue. In this work, focusing on
the advantages of the unsupervised and supervised methods, we
try to provide a vessel segmentation framework that can achieve
good segmentation accuracy and generalization capability. For
this, motived by [26], we do not take segmentation as a simple
pixel-wise classification problem, but attempt to establish the
intrinsic relationship between the vascular enhanced images
and the corresponding vessel labels by learning the description
and segmentation dictionaries. In addition, due to the big dif-
ference between the thick and thin retinal vessels, extracting
both of them simultaneously seems difficult, so we hereby use
a filtering-based technique to enhance the vessels at different
scales first and attempt to select the thin and thick vessel blocks
for the cross-modality dictionary learning to further promote
segmentation performance. The contributions of this work
are summarized as follows:

(1) We learn description and segmentation dictionaries to
establish a block-to-block relationship between the enhanced
image blocks and the labeled vessel blocks. Thus, fast detection
of vessel trees can be achieved via vessel block segmentation.

(2) In order to acquire more vascular details, we not only use
the multi-scale filtering to enhance the vessel structure but also
learn cross-modality dictionaries from the selected thin and
thick vessel blocks to detect vascular structures.

(3) Comprehensive experiments are conducted on three
benchmark data sets, and the results show that the proposed
method can result in good segmentation performances.

In the remainder of this paper, the proposed method is
described in Section 2 and the performance of our method
is assessed by experiments in Section 3. Finally, conclusions
are drawn in Section 4.

2. METHOD

Given an input fundus image, our method fulfills the segmen-
tation task following three main stages: vessel enhancement,
cross-modality dictionary learning, and vessel segmentation.
In the vessel enhancement stage, blood vessel details are en-
hanced by using a multi-scale Hessian-based filtering model.
In the cross-modality dictionary-learning stage, description
and segmentation dictionaries are learned simultaneously from
the enhanced vessel blocks (source modality) and the labeled
blocks (target modality) for vessel extraction. In the vessel seg-
mentation stage, vessels are segmented based on the learned
description and segmentation dictionaries. Besides, additional
pre-processing and post-processing operations are performed
to ensure higher segmentation accuracy by eliminating unex-
pected branches. The overall architecture of the proposed
method is illustrated in Fig. 1.

A. Pre-Processing
Fundus images usually suffer from inhomogeneous luminosity
and varying contrast, which will largely degrade the subsequent
vessel segmentation performance. In addition, the presence of

Fig. 1. Overall architecture of the proposed method.
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an optic disc or exudates will also degrade the segmentation
accuracy. To reduce erroneous detection caused by these unfav-
orable factors, we implement a pre-processing operation from
three aspects: (1) Luminosity normalization: since the R, G,
and B channels contain both luminosity information and color
information, in order to enhance the luminosity and preserve
the color information, we transfer the image from RGB to hue,
saturation, value (HSV) color space and adjust image luminos-
ity by gamma correction on the V channel to reduce the over-
bright or dark regions and make the luminosity homogeneous.
(2) Contrast enhancement: inspired by [27], we transfer the
luminosity normalized images to lab color space and implement
the contrast-constrained adaptive histogram equalization
(CLAHE) algorithm on the L channel to enhance the contrast
between the vessel and background. (3) Disturbance reduction:
we apply a Gaussian filter to reduce the noises and the bright-
ness of the optic disc or exudates via a simple thresholding.
Figure 2 shows the examples of pre-processing.

B. Vessel Enhancement
Hessian-based methods have been proved effective in vessel
enhancement [28], with the purpose of extracting principal
directions by second-order structures. The Hessian matrix is
computed as

H �x, y� �
2
4 I ⊗ ∂2Gσ

∂x2 I ⊗ ∂2Gσ
∂x∂y

I ⊗ ∂2Gσ
∂y∂x I ⊗ ∂2Gσ

∂y∂x

3
5, (1)

Gσ �
1

2πσ
exp

�
−
x2 � y2

2σ2

�
, (2)

where σ is the standard deviation of the Gaussian convolution
kernel to detect and match vessel width, and I denotes the
pre-processed image.

The eigenvalues of the Hessian matrix are calculated.
Here we denote the one with a bigger absolute value as λ2
and the one with smaller value as λ1. Since the eigenvalues
of the Hessian matrix can reflect the direction of an image,
a probability function is generated to detect vessels with the
two eigenvalues,

Pv�σ� �
(
exp

�
− �Rb�2

2α2

�
×
�
1 − exp

�
− S2
2β2

��
, if jλ2j > jλ1j

0, otherwise
,

(3)

where Rb � λ1∕λ2, S �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ21 � λ22

p
, α and β are the adjustable

parameters, and here we determine α � 0.5 and β � 15. Pv
represents a probability function to identify whether a pixel

belongs to a vessel pixel with a value varied from 0 to 1 (a large
Pv means a large probability of being a vessel pixel).

To enhance the vessels regardless their width, we calculate
the probability maps under different scales σ and detect the
maximum response to match the size of the vessel as

P � max
σ∈�σmin, σmax�

Pv�σ�, (4)

where σmin and σmax represents the minimum and maximum
value of σ, and P represents the enhanced vessel map. In the
experiment, we set six spatial scales with σmin � 1 and
σmax � 3.5. As shown in Fig. 3, by multi-scale processing,
the thick and thin vessels are simultaneously enhanced.

C. Cross-Modality Dictionary Learning
Unlike the traditional pixel-based segmentation method that
usually trains a regression model to predict the pixel classifica-
tion, we do not take the segmentation as a simple classification
task but try to establish the intrinsic relationship via cross-
modality data transformation. For this, we define the enhanced
vessel images as a source modality and the ground-truth-labeled
vessels as a target modality. Then, the projection relationship
between the source modality and the target modality is estab-
lished via cross-modality dictionary learning. Thus, informa-
tion from the source modality can be easily projected to the
target modality to get the classification. As shown in Fig. 4,

Fig. 2. Example of pre-processing (a) original image, (b) luminosity
normalization, (c) contrast enhancement, (d) disturbance reduction.

Fig. 3. Example of multi-scale vessel enhancement.

Fig. 4. Cross-modality dictionary learning.
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cross-modality dictionary learning mainly contains two aspects:
training sample selection and dictionary learning via K -means
singular value decomposition (K -SVD) [29–31].

1. Training Sample Selection
To construct the training samples, numerous overlapping
blocks with a size of 10 × 10 are randomly selected from each
training image. To select the blocks with richer vascular struc-
ture, we select blocks with large variance among all the blocks
on the ground-truth-vessel image (to remove blocks without
a vessel structure). The corresponding blocks from the vessel-
enhanced images are also selected. In addition, to eliminate the
influence of vessel thickness and to preserve the segmentation
capability of the learned dictionaries, we select both thin and
thick vessel blocks to construct the training samples. As a result,
we obtain two types of feature vector matrices X � �x1,…, xP �
and Y � �y1,…, yP �, where xp ∈ Rn×1 and yp ∈ Rn×1

represent the matched blocks in the vessel-enhanced images
and ground-truth-vessel images containing n pixels and
p � 1,…,P. Here, n � 100 and P � 100000. Although the
discriminative ability of our dictionaries will be increased by
selecting more blocks, the training complexity will be increased
correspondingly. As a trade-off, we select total of 100,000
blocks from all training images. Figure 5 shows the partial
blocks selected in the training set.

2. Dictionary Learning
In this paper, the description dictionary and segmentation
dictionary are learned simultaneously using the selected
enhanced blocks and their corresponding labeled blocks (con-
taining both thin and thick vessel blocks). Given a fixed least
non-zero element T 0, the dictionary learning demands the
smallest reconstruction error, and the objective function is
formulated as follows:

hDd ,Ds,Ai � arg min
Dd ,Ds ,A

kY −DdAk22 � λkX −DsAk22

s:t: ∀i , kaik0 ≤ T 0, (5)

where Dd is the dictionary learned in the source modality
(defined as the description dictionary), Ds is the dictionary
learned in the target modality (defined as the segmentation dic-
tionary), λ is a parameter to control the trade-off between the
reconstruction errors in the source and target modalities, A is
the sparse coefficient matrix, k · k0 represents the l0 norm,
which calculates the amount of non-zero values in the matrix,
and k · k2 represents the l2 norm.

To optimize Eq. (5), it is rewritten as

hDd ,Ds,Ai � arg min
Dd ,Ds ,A

����
�

Yffiffiffi
λ

p
X

�
−

�
Ddffiffiffi
λ

p
Ds

�
A
����2
2

s:t: ∀i, kaik0 ≤ T 0: (6)

Let Ynew � ��Y�T ,
ffiffiffi
λ

p
�X�T �T ,Dnew � ��Dd �T ,

ffiffiffi
λ

p
�Ds�T �T ,

and the optimization of Eq. (6) is equivalent to solving the
following problem:

hDnew,Ai � arg min
Dnew ,X

kYnew −DnewAk22

s:t: ∀i, kaik0 ≤ T 0: (7)

Equation (7) is a standard sparse coding problem, which can be
efficiently solved by the K -SVD algorithm [29–31]. Thus, the
desired Dd and Ds can be separated from the trained Dnew.
Figure 6 shows the visualized partial atoms in the description
and segmentation dictionaries learned from the training data
set. The number of the atoms is set to 1024. It is clear that the
structures and distributions of the dictionary atoms for the two
dictionaries are prominent in representing vascular details.

D. Blood Vessel Segmentation
At the testing stage, given an enhanced fundus image, after
extracting non-overlapping blocks, for a block vector yi, we
compute the sparse coefficient âi w.r.t. the learned description
dictionary Dd by solving the following optimization function:

arg min
âi

kyi −Dd âik22, s:t:kâik0 ≤ T 0: (8)

The above problems can be solved using the orthogonal match-
ing pursuit (OMP) algorithm [32]. Then, the vessel block
vector is predicted based on the learned sparse coefficient and
segmentation dictionary Ds, computed as follows:

x̂i � Ds âi : (9)

All pixels in the segmented vessel map are classified as vessel and
non-vessel results by

∀�x, y�V �x, y� �
�
1, x̂�x, y� ≥ T 1

0, otherwise
, (10)

where V �x, y� is the segmented vessel, x̂�x, y� is vessel map
created by stitching all blocks, and T 1 is the threshold to obtain
the binary vessel. In this experiment, we determine the optimal
threshold T 1 by maximizing the accuracy rate as described
in [25].

Fig. 5. Partial training samples (a) thin blocks from the enhanced
images, (b) thin blocks from ground truth vessel images, (c) thick
blocks from the enhanced images, (d) thick blocks from ground truth
vessel images.

Fig. 6. Partial atoms of (a) description dictionary and (b) segmenta-
tion dictionary.
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E. Post-Processing
The obtained vessels may contain noises, small misclassified
non-vessels, and undetected vessel holes. To improve segmen-
tation accuracy, additional post-processing is implemented
by the following two sub-steps: (1) removing vessel areas below
20 pixels to reduce small misclassified non-vessels and noises;
(2) filling the vessel holes below 20 pixels to connect the break-
points and holes between vessel pixels. The influences of
pre-processing and post-processing on vessel segmentation
are shown in Fig. 7. Obviously, pre-processing will effectively
eliminate pseudo-contours, while post-processing will remove
noises and fill small holes to ensure a better segmentation.

3. EXPERIMENTS

A. Training and Testing Data Sets
The proposed method relies on the training data set to learn the
description dictionary and segmentation dictionary, and it uses
the testing data set to further validate the performance. We
select the following three databases for the experiments, as
shown in Table 1.

DRIVE database [33]: contains 40 color retinal images
(seven of them with pathologies) with a resolution of 584 ×
565 and a 45° field of view (FOV), in which 20 images are
used as the training set, and the other 20 images are used as
the testing set. Two different manual annotations are provided
for the testing set, and only one annotation is available in the
training set. The first observer’s segmentation is used as the
ground truth.

STARE database [11]: contains 20 color retinal images (ten
of them with pathologies) with a resolution of 700 × 605,
which are captured at 35° FOV. Two different manual anno-
tations are also provided in the database. The first observer’s
segmentation is used as the ground truth.

HRF database [34]: contains 45 color retinal images in
which 15 images are selected from healthy patients, 15 images
are selected from patients with diabetic retinopathy, and 15 im-
ages are selected from patients with glaucoma, which are cap-
tured at 60° FOV. The resolution of the images is 3504 × 2336.

Only one ground truth segmentation is available in the data-
base. To reduce the computational cost, all images are down-
sampled to a resolution of 876 × 584.

For the DRIVE database, we selected 10 enhanced images
and label images from the training data set to learn the diction-
aries. Since the HRF and STARE databases do not have strict
training and testing sets, we hereby use the leave-one-out strat-
egy for validation [25], in which each image in the database is
tested using the dictionaries learned from the remaining images
of the database.

B. Evaluation Methodology
To objectively evaluate the segmentation method, eight metrics
are selected for validation: accuracy (ACC), specificity (SP),
sensitivity (SE), positive predictive value (PPV), negative pre-
dictive value (NPV), F1 score (F1), G-mean (G), andMatthews
correlation coefficient (MCC) [35,36]. The metrics are defined
in Table 2.

N �TP�TN�FP�FN, S � �TP� FN�∕N , and P �
�TP� FP�∕N . True Positives (TP) is the number of pixels
correctly detected as blood vessel pixels, False Negatives (FN)
is the number of pixels incorrectly classified as background pix-
els, True Negatives (TN) is the number of pixels correctly clas-
sified as background pixels, and False Positives (FP) is the
number of pixels incorrectly classified as blood vessel pixels.

Among these metrics, sensitivity (SE) measures the ratio of
the correctly detected blood vessel pixels to all vessel pixels in
the label image, specificity (SP) indicates the ratio of the cor-
rectly distinguished non-vessel pixels to all non-vessel pixels in
the label image, and accuracy (ACC) is the ratio of the wrong
classified pixels to all pixels. Positive predictive value (PPV) rep-
resents the correctly segmented vessel pixels to all the vessel
pixels in the segmented image, while negative predictive value
(NPV) indicates the correctly distinguished non-vessel pixels
to all non-vessel pixels in the segmentation image. MCC is
a correlation coefficient between the segmented vessel and
labeled vessel. The F1 score is the mean value of PPV and SE
with a maximum value of 1 and the lowest value 0. Similarly,
the G-mean is a metric that measures the trade-off between SE
and SP by taking their geometric mean.

C. Results

1. Segmentation Results
In order to evaluate the performance of our method, we carry
out experiments on three databases: DRIVE, STARE, and

Fig. 7. Influences of pre-processing and post-processing (a) origi-
nal fundus image, (b) segmentation without pre-processing and
post-processing, (c) segmentation without pre-processing but with
post-processing, (d) segmentation without post-processing but with
pre-processing, (e) segmentation with pre-processing and post-
processing.

Table 1. Descriptions of Three Databases

Database Resolutions FOV Number Annotation

DRIVE 584 × 565 45° 40 2
STARE 700 × 605 35° 20 2
HRF 3504 × 2336 60° 45 1

Table 2. Descriptions of Metrics and Calculation
Formulas

Metrics Formulas

SE TP∕�TP� FN�
SP TN∕�TN� FP�
ACC �TN� FP�∕�TN� TP� FN� FP�
PPV TP∕�TP� FP�
NPV TN∕�TN� FN�
G

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
SE × SP

p

F1 �2 × PPV × SE�∕�PPV � SE�
MCC �TP∕N − S × P�∕

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P × S × �1 − S��1 − P�

p
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HRF. By comparing our segmentation results with the manual
annotated vessel labels, we calculated the eight metrics intro-
duced above based on pixel similarity. Figure 8 shows the partial
segmentation results on DRIVE, STARE and HRF, and the
last column in each database contains the pathological fundus
images. By comparing the segmentation results obtained with
the manually annotated vessel label, we can observe that our
method can segment the main vessels very well and can resist
the influence of pathologies, but it still has a limitation in
detecting tiny vessels, especially on the DRIVE and HRF data-
bases. Table 3 shows the segmentation results. The average
ACC, SP, and SE values reach 0.9583, 0.9792, and 0.7393,
respectively in the DRIVE database; 0.9549, 0.9740, and
0.7265 in the HRF database; and 0.9531, 0.9731, and 0.7046
in the STARE database, which indicates the good performance
of our method.

2. Comparison with Other Methods
Tables 4–6 illustrate the segmentation performance compared
with other methods on three databases, respectively. From the
results, we can observe that our method achieves the highest
accuracy, NPV, F1, and G values, relatively high SP, and
acceptable SE, PPV, and MCC values. The comparison results
show that our method has its strengths in less noises (higher SP
values) and limitations in detecting tiny vessels (relatively lower
SE values). We can also observe from these tables that the SE of
our method is relatively low due to the limitation of training
samples in reflecting thin vessels, indicating that our method
still needs to extract more vessel details.

3. Cross-Database Validation
To analyze the generalization capability of our method, we fur-
ther conduct cross-database validation (e.g., dictionaries trained

Table 3. Segmentation Results on DRIVE, HRF, and STARE Databases

Database ACC SP SE PPV NPV F1 G MCC

DRIVE 0.9583 0.9792 0.7393 0.7770 0.9753 0.7545 0.8501 0.7340
HRF 0.9549 0.9740 0.7265 0.7003 0.9771 0.7093 0.8403 0.6873
STARE 0.9531 0.9731 0.7046 0.6984 0.9761 0.6904 0.8248 0.6716

Fig. 8. Examples of vessel segmentation on the DRIVE, STARE, and HRF databases; (a), (b), and (c) are the original images, segmentation
results, and manual annotations on DRIVE, respectively; (d), (e), and (f ) are the original images, vessel segmentation results, and manual annotations
on STARE, respectively; (g), (h), and (i) are the original images, vessel segmentation results, and manual annotations on HRF.

Table 4. Performance Comparison of Different Segmentation Methods on DRIVE Database

Method ACC SP SE PPV NPV F1 G MCC

Fraz [37] 0.9430 0.9768 0.7152 0.8205 0.9587 — — 0.7333
Marin [38] 0.9452 0.9801 0.7067 — — — — —
Fraz [17] 0.9422 0.9742 0.7302 0.8112 0.9600 — — 0.7359
Vega [39] 0.9412 0.9600 0.7444 — — 0.6884 — 0.6617
Palomera [40] 0.9220 0.9610 0.6600 — — — — —
Biswal [41] 0.9500 0.9700 0.7100 — — 0.7500 0.8500 0.7600
Proposed 0.9583 0.9792 0.7393 0.7770 0.9753 0.7545 0.8501 0.7340
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on the DRIVE database to test the HRF and STARE databases,
dictionaries trained on the HRF database to test the DRIVE
and STARE databases, or dictionaries trained on the STARE
database to test the DRIVE and HRF databases). The cross-
database validation results are illustrated in Table 7. Observed
from the table, the selection of the training samples will have a
large influence on the segmentation results. For example, the
ACC, SP, and SE metrics on the STARE database are largely
decreased when trained on the HRF database. The reason may
be that the HRF database has thinner vessel types. We can also
observe from the table that the dictionaries trained from the
STARE database are not suitable for vessel segmentation on
the DRIVE and HRF databases. The reason may be that the
STARE database contains many pathological or low-quality
images, and the ground truth vessel thickness is quite different
from those of the HRF and DRIVE databases. In other words,
by carefully selecting the training samples that include the ves-
sel types in the testing database, the segmentation performance
of the proposed method is usually stable.

D. Further Discussion
In this paper, we attempt to learn cross-modality dictionaries
for retinal vessel segmentation. Although our model demon-
strates its strength in vessel detection for different types of reti-
nal images, the following issues still deserve to be considered:

(1) The proposed vessel segmentation method is highly de-
pendent on the samples selected for dictionary learning. In this
paper, we only select samples from thin and thick vessel blocks,
but the segmentation performance on thin vessels is not as

satisfactory as expected. In future work, we consider adding
samples with different thicknesses. In addition, more types of
images should be considered, such as OCT images [43,44].

(2) As illustrated in Fig. 7, the pre-processing and post-
processing can decrease small vessel holes and noises, especially
in the vicinity of the optic disc, but the vascular details may
be also removed, which indicates a demand for better pre-
processing and post-processing approaches.

(3) For our block-based segmentation model, in addition
to the Hessian-based multi-scale enhancement feature, we
expect to promote the efficiency and robustness by adopting
richer enhanced vessel features and better supervised dictionary
learning models, such as label-consistent k-means singular
value decomposition (LC-KSVD) [45–47], which can add
labels for vessels of different thickness.

(4) In the vessel enhancement stage, a large scale factor
for the big vessel may make the small vessel fat and affect
its morphological information. This may lead to fat segmenta-
tion results, especially for the thin vessels. Therefore, a better
enhancement method will be considered in the future.

(5) Similar to the existing supervised methods, our method
also needs manual labeled vessels for training. Thus, if one
database does not have enough labels for training, the availabil-
ity of our method on the database will be limited. Therefore,
cross-database capability becomes very important for the super-
vised methods.

(6) Compared with neural-network-based supervised meth-
ods, our dictionary-learning-based method can only segment
block-wise vessels, but the training process is relatively simple
and does not need a complex parameter selection process.

Table 5. Performance Comparison of Different Segmentation Methods on HRF Database

Method ACC SP SE PPV NPV F1 G MCC

Odstrcilik [34] 0.9494 0.9669 0.7741 — — — — —
Zhao [42] 0.9410 0.9420 0.7490 — — — — —
Yu [18] 0.9514 0.9685 0.7810 — — — — —
Proposed 0.9549 0.9740 0.7265 0.7003 0.9771 0.7093 0.8403 0.6873

Table 6. Performance Comparison of Different Segmentation Methods on STARE Database

Method ACC SP SE PPV NPV F1 G MCC

Fraz [37] 0.9437 0.9665 0.7409 0.7363 0.9709 — — 0.7003
Marin [38] 0.9526 0.9819 0.6944 — — — — —
Fraz [17] 0.9423 0.9660 0.7318 0.7294 0.9700 — — 0.6908
Vega [39] 0.9483 0.9671 0.7019 — — 0.6616 — 0.6400
Palomera [40] 0.9240 0.9400 0.7790 — — — — —
Proposed 0.9531 0.9731 0.7046 0.6984 0.9761 0.6904 0.8248 0.6716

Table 7. Performance of Cross-Database Validation

Database ACC SP SE PPV NPV F1 G MCC

DRIVE (trained on HRF) 0.9504 0.9723 0.7232 0.7210 0.9734 0.7167 0.8373 0.6928
DRIVE (trained on STARE) 0.9462 0.9839 0.5547 0.6250 0.7697 0.6421 0.7378 0.6250
STARE (trained on DRIVE) 0.9521 0.9772 0.6348 0.7256 0.9713 0.6518 0.7782 0.6413
STARE (trained on HRF) 0.9494 0.9685 0.7040 0.6789 0.9768 0.6657 0.8171 0.6528
HRF (trained on DRIVE) 0.9445 0.9644 0.7022 0.6307 0.9752 0.6581 0.8215 0.6330
HRF (trained on STARE) 0.9400 0.9700 0.5850 0.6390 0.9654 0.5979 0.7513 0.5740
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4. CONCLUSIONS

In this paper, we present a new fundus vessel segmentation
method that uses multi-scaling filtering to enhance the struc-
ture information of vessels and segments of retinal vessels
based on vessel block segmentation instead of pixel-wise clas-
sification via cross-modality dictionary learning. As a result,
our method yields a segmentation result with the advantages
of good segmentation accuracy and generalization capability.
As for our future work, based on this work, we plan to add
richer enhanced features and add labels for vessels of different
thicknesses to promote segmentation accuracy.

Funding. National Natural Science Foundation of China
(NSFC) (61622109); Natural Science Foundation of Zhejiang
Province of China (R18F010008); Natural Science Foundation
of Ningbo (2017A610112). It was also sponsored by the
K. C. Wong Magna Fund at Ningbo University.

REFERENCES
1. M. D. Abràmoff, M. K. Garvin, and M. Sonka, “Retinal imaging and

image analysis,” IEEE Rev. Biomed. Eng. 3, 169–208 (2010).
2. R. D. Jager, W. F. Mieler, and J. W. Miller, “Age-related macular

degeneration,” N. Engl. J. Med. 358, 2606–2617 (2008).
3. N. Cheung, P. Mitchell, and T. Y. Wong, “Diabetic retinopathy,” Lancet

376, 124–136 (2010).
4. J. Cheng, J. Liu, Y. Xu, F. Yin, D. W. K. Wong, N. M. Tan, and T. Y.

Wong, “Superpixel classification based optic disc and optic cup seg-
mentation for glaucoma screening,” IEEE Trans. Med. Imaging 32,
1019–1032 (2013).

5. M. D. Abràmoff, J. C. Folk, D. P. Han, J. D. Walker, D. F. Williams,
S. R. Russell, and M. Lamard, “Automated analysis of retinal images
for detection of referable diabetic retinopathy,” JAMA Ophthalmol.
131, 351–357 (2013).

6. S. C. Cheng and Y. M. Huang, “A novel approach to diagnose diabe-
tes based on the fractal characteristics of retinal images,” IEEE Trans.
Inf. Technol. Biomed. 7, 163–170 (2003).

7. F. Zana and J. C. Klein, “A multimodal registration algorithm of eye
fundus images using vessels detection and Hough transform,”
IEEE Trans. Med. Imaging 18, 419–428 (1999).

8. T. Y. Wong, F. A. Islam, R. Klein, B. E. Klein, M. F. Cotch, C. Castro,
and E. Shahar, “Retinal vascular caliber, cardiovascular risk factors,
and inflammation: the multi-ethnic study of atherosclerosis (MESA),”
Invest. Ophthalmol. Visual Sci. 47, 2341–2350 (2006).

9. H. Li, W. Hsu, M. L. Lee, and T. Y. Wong, “Automatic grading of retinal
vessel caliber,” IEEE Trans. Biomed. Eng. 52, 1352–1355 (2005).

10. M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka,
C. Owen, and S. Barman, “Blood vessel segmentation methodologies
in retinal images: a survey,” Comput. Methods Programs Biomed.
108, 407–433 (2012).

11. A. Hoover, V. Kouznetsova, and M. Goldbaum, “Locating blood
vessels in retinal images by piecewise threshold probing of a
matched filter response,” IEEE Trans. Med. Imaging 19, 203–210
(2000).

12. B. Zhang, L. Zhang, L. Zhang, and F. Karray, “Retinal vessel extrac-
tion by matched filter with first-order derivative of Gaussian,” Comput.
Biol. Med. 40, 438–445 (2010).

13. A. Mendonca and A. Campilho, “Segmentation of retinal blood
vessels by combining the detection of centerlines and morphological
reconstruction,” IEEE Trans. Med. Imaging 25, 1200–1213 (2006).

14. I. Liu and Y. Sun, “Recursive tracking of vascular networks in
angiograms based on the detection deletion scheme,” IEEE Trans.
Med. Imaging 12, 334–341 (1993).

15. B. Al-Diri, A. Hunter, and D. Steel, “An active contour model for seg-
menting and measuring retinal vessels,” IEEE Trans. Med. Imaging
28, 1488–1497 (2009).

16. S. Cetin, A. Demir, A. Yezzi, M. Degertekin, and G. Unal, “Vessel trac-
tography using an intensity based tensor model with branch detec-
tion,” IEEE Trans. Med. Imaging 32, 348–363 (2013).

17. M. M. Fraz, A. Basit, and S. A. Barman, “Application of morphological
bit planes in retinal blood vessel extraction,” IET Image Proc. 26,
373–383 (2013).

18. H. Yu, S. Barriga, C. Agurto, G. Zamora, W. Bauman, and P. Soliz,
“Fast vessel segmentation in retinal images using multiscale en-
hancement and second-order local entropy,” Proc. SPIE 8315,
83151B (2012).

19. R. Annunziata, A. Garzelli, L. Ballerini, A. Mecocci, and E. Trucco,
“Leveraging multiscale Hessian-based enhancement with a novel
exudate inpainting technique for retinal vessel segmentation,” IEEE
J. Biomed. Health Inf. 20, 1129–1138 (2016).

20. G. Azzopardi, N. Strisciuglio, M. Vento, and N. Petkov, “Trainable
COSFIRE filters for vessel delineation with application to retinal
images,” Med. Image Anal. 19, 46–57 (2015).

21. Y. Zhao, J. Zhao, J. Yang, Y. Liu, Y. Zhao, Y. Zheng, L. Xia, and Y.
Wang, “Saliency driven vasculature segmentation with infinite perim-
eter active contour model,” Neurocomputing 259, 201–209 (2017).

22. S. Roychowdhury, D. D. Koozekanani, and K. K. Parhi, “Blood vessel
segmentation of fundus images by major vessel extraction and sub-
image classification,” IEEE J. Biomed. Health Inf. 19, 1118–1128
(2015).

23. S. Aslani and H. Sarnel, “A new supervised retinal vessel segmenta-
tion method based on robust hybrid features,” Biomed. Signal
Process. Control 30, 1–12 (2016).

24. E. Ricci and R. Perfetti, “Retinal blood vessel segmentation using
line operators and support vector classification,” IEEE Trans. Med.
Imaging 26, 1357–1365 (2007).

25. Q. Li, B. Feng, L. Xie, P. Liang, H. Zhang, and T. Wang, “A cross-
modality learning approach for vessel segmentation in retinal images,”
IEEE Trans. Med. Imaging 35, 109–118 (2016).

26. B. Chen, Y. Chen, Z. Shao, and L. Luo, “Blood vessel enhance-
ment via multi-dictionary and sparse coding,” Neurocomputing 200,
110–117 (2016).

27. M. Zhou, K. Jin, S. Wang, J. Ye, and D. Qian, “Color retinal image
enhancement based on luminosity and contrast adjustment,” IEEE
Trans. Biomed. Eng. 65, 521–527 (2018).

28. A. Frangi, W. Niessen, K. Vincken, and M. Viergever, “Multiscale
vessel enhancement filtering,” in Medical Image Computing and
Computer-Assisted Intervention (MICCAI) (1998), Vol. 1496,
pp. 130–137.

29. M. Aharon, M. Elad, and A. Bruckstein, “K-SVD: an algorithm for de-
signing overcomplete dictionaries for sparse representation,” IEEE
Trans. Signal Process. 54, 4311–4322 (2006).

30. Q. Jiang, F. Shao, W. Lin, and G. Jiang, “Learning sparse represen-
tation for objective image retargeting quality assessment,” IEEE
Trans. Cybern. 48, 1276–1289 (2018).

31. F. Shao, W. Tian, W. Lin, G. Jiang, and Q. Dai, “Learning sparse rep-
resentation for no-reference quality assessment of multiply-distorted
stereoscopic images,” IEEE Trans. Multimedia 19, 1821–1836 (2017).

32. Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal match-
ing pursuit: recursive function approximation with applications to
wavelet decomposition,” in Proceedings of 27th Asilomar Conference
on Signals, Systems and Computers (1993), Vol. 1, pp. 40–44.

33. J. Staal, M. Abramoff, M. Niemeijer, M. Viergever, and B. van
Ginneken, “Ridge-based vessel segmentation in color images of
the retina,” IEEE Trans. Med. Imaging 23, 501–509 (2004).

34. J. Odstrcilik, R. Kolar, A. Budai, J. Hornegger, J. Jan, J. Gazarek, T.
Kubena, P. Cernosek, O. Svoboda, and E. Angelopoulou, “Retinal
vessel segmentation by improved matched filtering: evaluation on a
new high-resolution fundus image database,” IET Image Process.
7, 373–383 (2013).

35. J. I. Orlando, E. Prokofyeva, and M. B. Blaschko, “A discriminatively
trained fully connected conditional random field model for blood ves-
sel segmentation in fundus images,” IEEE Trans. Med. Imaging 64,
16–27 (2017).

36. J. Zhang, B. Dashtbozorg, E. Bekkers, J. P. W. Pluim, R. Duits, and
B. M. H. Romeny, “Robust retinal vessel segmentation via locally

7294 Vol. 57, No. 25 / 1 September 2018 / Applied Optics Research Article



adaptive derivative frames in orientation scores,” IEEE Trans. Med.
Imaging 35, 2631–2644 (2016).

37. M. M. Fraz, P. Remagnino, A. Hoppe, B. Uyyanonvara, A. Rudnicka,
C. Owen, and S. Barman, “Retinal vessel extraction using first-order
derivative of Gaussian and morphological processing,” in Advances in
Visual Computing (2011), Vol. 6938, pp. 410–420.

38. D. Marin, A. Aquino, M. E. Gegundez-Arias, and J. M. Bravo, “A new
supervised method for blood vessel segmentation in retinal images
by using gray-level and moment invariants-based features,” IEEE
Trans. Med. Imaging 30, 146–158 (2011).

39. R. Vega, G. Sanchez-Ante, L. E. Falcon-Morales, S. Sossa, and E.
Guevara, “Retinal vessel extraction using lattice neural networks with
dendritic processing,” Comput. Biol. Med. 58, 20–30 (2015).

40. M. Palomera-Prez, M. Martinez-Perez, H. Bentez-Prez, and J.
Ortega-Arjona, “Parallel multiscale feature extraction and region
growing: application in retinal blood vessel detection,” IEEE Trans.
Inf. Technol. Biomed. 14, 500–506 (2010).

41. B. Biswal, T. Pooja, and N. Bala Subrahmanyam, “Robust retinal
blood vessel segmentation using line detectors with multiple masks,”
IET Image Process. 12, 389–399 (2018).

42. Y. Zhao, Y. Zheng, Y. Liu, Y. Zhao, L. Luo, S. Yang, and J. Liu,
“Automatic 2-D/3-D vessel enhancement in multiple modality images
using a weighted symmetry filter,” IEEE Trans. Med. Imaging 37, 438–
450 (2018).

43. A. Li, J. You, C. Du, and Y. Pan, “Automated segmentation and quan-
tification of OCT angiography for tracking angiogenesis progression,”
Biomed. Opt. Express 8, 5604–5616 (2017).

44. Z. Chu, J. Lin, C. Gao, C. Xin, Q. Zhang, C. L. Chen, L. Roisman, G.
Gregori, P. J. Rosenfeld, and R. K. Wang, “Quantitative assessment
of the retinal microvasculature using optical coherence tomography
angiography,” J. Biomed. Opt. 21, 066008 (2016).

45. Z. Jiang, Z. Lin, and L. Davis, “Label consistent K-SVD: learning a
discriminative dictionary for recognition,” IEEE Trans. Pattern Anal.
Mach. Intell. 35, 2651–2664 (2013).

46. Q. Jiang, F. Shao, W. Lin, K. Gu, G. Jiang, and H. Sun, “Optimizing
multi-stage discriminative dictionaries for blind image quality assess-
ment,” IEEE Trans. Multimedia 20, 2035–2048 (2018).

47. L. Zhang, L. Li, H. Li, and M. Yang, “3D ear identification using block-
wise statistics based features and LC-KSVD,” IEEE Trans. Multimedia
18, 1531–1541 (2016).

Research Article Vol. 57, No. 25 / 1 September 2018 / Applied Optics 7295


	XML ID funding

