
Signal, Image and Video Processing (2019) 13:1529–1537
https://doi.org/10.1007/s11760-019-01501-9

ORIG INAL PAPER

Discriminative dictionary learning for retinal vessel segmentation
using fusion of multiple features

Yan Yang1 · Feng Shao1 · Zhenqi Fu1 · Randi Fu1

Received: 26 November 2018 / Revised: 4 May 2019 / Accepted: 20 May 2019 / Published online: 29 May 2019
© Springer-Verlag London Ltd., part of Springer Nature 2019

Abstract
In recent years, automated retinal vessel segmentation has become especially essential for the early detection of some oph-
thalmological and cardiovascular diseases. In this paper, we have presented a new retinal vessel segmentation method via
discriminative dictionary learning using fusion of multiple features, which is able to capture both thick and thin vessel struc-
tures. In the training stage, we employ six different enhancement algorithms to obtain multiple complementary features that
contain rich vascular information. Then, the manually annotated ground-truth vessels are classified into thick or thin vessels as
the label information, and the label consistentKSVDbased framework is applied to train the dictionary for vessel segmentation.
In the testing stage, comprehensive experiments are conducted on three datasets to measure segmentation performance with
eight representative evaluation metrics. The average sensitivity reaches 0.7915, 0.7560 and 0.7202 respectively, suggesting
that our method can segment tiny vascular structures well.

Keywords Retinal image · Blood vessel segmentation · Vascular enhancement · Dictionary learning

1 Introduction

Retinal image, also named as fundus image, is a kind
of important medical images captured by fundus cameras
[1]. It can provide abundant information for the diagnosis
of ophthalmological diseases, such as age-related macular
degeneration, glaucoma and diabetic retinopathy. Retinal
vessels, appeared as treelike branches, are the only blood ves-
sel structures in human blood vessel circulation system that
can be observed noninvasively. Therefore, exudation, hemor-
rhage and morphology changes in retinal vessels can reflect
symptoms of some systemic cardiovascular diseases, which
indicates retinal vessel structures are especially important
for the diagnoses of fundus diseases and some cardiovascu-
lar diseases. In addition, retinal vessels can be used in some
special applications, such as multimodal image registration
and optic disc localization. However, most of the retinal ves-
sels are currently obtained by the manual measurements and
annotations,which is extremely tedious and time-consuming.
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Thus, it is necessary to achieve automatic blood vessel seg-
mentation for retinal images.

Over the last decades, researchers have proposed many
automatic segmentation methods, which can be broadly
divided into two categories: unsupervised methods and
supervised methods [2]. Unsupervised methods do not rely
on ground truth information, which are relatively simplewith
lower complexity compared with those supervised methods.
Annunziata et al. [3] segmented vessels by a multiscale Hes-
sian filtering method after removing undesired exudates. Yu
et al. [4] constructed a vessel probability map and employed
a local second-order entropy thresholding method to extract
the vessel structures. Azzopardi et al. [5] adopted the com-
bination of shifted filter responses (COSFIRE) algorithm to
extract the bar-shaped retinal vessel structures. Zhao et al. [6]
introduced the active contour model and compactness-based
saliency detection technology to detect vessels after vascu-
lar enhancement. Fraz et al. [7] extracted retinal vessels by
Gaussian filtering and morphological bit plane slicing. Zhao
et al. [8] adopted the weighted symmetric filters to segment
vessel structures. Zhang et al. [9] used wavelet transforma-
tion to lift image dimensions and employedGaussianfiltering
to enhance vessel structures.

On the other hand, supervised methods need to train mod-
els with pre-labeled ground-truth vessel annotations, which

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11760-019-01501-9&domain=pdf
http://orcid.org/0000-0002-2495-9924


1530 Signal, Image and Video Processing (2019) 13:1529–1537

can be further categorized into shallow learning approaches
and deep learning approaches. The shallow learning meth-
ods mainly segment vessels by training a binary classifier
to discriminate all pixels into vessel and non-vessel back-
ground pixels with the previously extracted features. The
classifiers are trainedwith techniques like k-nearest neighbor
(KNN), support vector machine (SVM), random forest (RF).
Soares et al. [10] trained aBayes classifierwith theGabor and
intensity features. Fraz et al. [11] adopted the bagged deci-
sion tree to segment vessels with multiple features. Aslani
et al. [12] trained the random forest classifier using different
hybrid features to classify vessel pixels andnon-vessel pixels.
Roychowdhury et al. [13] extracted major vessel structures
first and then trained the Gaussian mixture model to segment
tiny vessels. Marin et al. [14] learned a neural network with
gray-level and moment invariants-based features. Besides,
segmentation methods based on deep learning are gradually
developed. These methods do not need to manually extract
features and is more intelligent than shallow learning meth-
ods. Orando et al. [15] adopted fully connected conditional
random field model to detect vessels. Li et al. [16] trained
a cross-modality transformation mapping function by deep
learning networks for segmentation. Fu et al. [17] formu-
lated segmentation as a boundary detection problem and
used a fully convolutional neural network to solve. Yan et al.
[18] segmented vessels by deep learning with joint segment-
level and pixel-wise losses. Compared with unsupervised
methods, supervised approaches are relatively complex but
normally having a higher segmentation accuracy.

However, there are still limitations in accurate vessel
extraction due to the following reasons: (1) presence of optic
disk and some pathological structures like hemorrhages,
lesions and exudates; (2) variability of vascular thickness
and length; (3) low contrast and poor quality of some retinal
images [19]; (4) central reflexon some large vessel structures;
(5) inhomogeneous illumination level of retinal vessels in dif-
ferent local areas. In our previouswork [20], a cross-modality
dictionary learning framework by KSVD is established, in
which description and segmentation dictionaries are learned
to build intrinsic relationship between the enhanced vessels
and the ground truth vessels. In this paper, we complement
our previous work by further considering enriched features.
We alsomodify the dictionary learning framework by adding
a classification label term. Our method performs much better
than previous work for the following contributions: (1) We
adopt different enhancement algorithms to obtain comple-
mentary feature maps to comprehensively represent retinal
vessel characteristics and enhance the contrast of original
retinal images. (2) Considering variations in vessel thick-
ness, we classify all vessel branches into thick or thin vessels,
and assign a classification label for each block to supervise
dictionary training. (3) We explore LC-KSVD based clas-
sification framework to establish the intrinsic relationship

between multiple features and the ground truths. We used
LC-KSVD rather than usual KSVD mainly because it can
introduce a new discriminative label constraint to supervise
the training.

The rest of this paper is organized as follows. Section 2
shows the details of our method. Section 3 presents our
results, and Sect. 4 gives the conclusions.

2 Method

Figure 1 illustrates the overall framework of our proposed
method, which consists of four main steps, feature represen-
tation, vessel classification, dictionary learning and vessel
segmentation. All these steps belong to two stages: train-
ing stage and testing stage. In the training stage, LC-KSVD
model is used to learn the dictionary and transformation
matrix. In the testing stage, vessels are segmented with the
learned dictionary and transformation matrix.

2.1 Feature representation

Since retinal images usually suffer from inhomogeneous
luminosity, a pre-processing operation is conducted. We
transfer the original image into HSV color space and per-
form the gamma correction on channel V to normalize the
luminosity to reduce the over dark or over bright areas. Then,
we transfer the image back to RGB color space and choose
green channel for the consequent feature representation.

Retinal images are sometimes of low contrast and the
modality of source retinal vessels is quite different from
ground truths, which will degrade the performance of seg-
mentation. Thus, instead of directly using preprocessed
images for training, we adopt the enhanced feature maps
with brighter vessel structures and darker background infor-
mation to train the dictionary. In addition, to present and
reflect vascular characteristics comprehensively, we applied
six state-of-the-art enhancement algorithms, i.e., total vari-
ation by l1 norm [21], Hessian filtering [22], line structure
detection, bottom hat transformation, Retinex [23] and con-
trast limited adaptive histogram equalization (CLAHE) [24],
to acquire feature maps. These maps can well present the
geometry, texture and space information of retinal ves-
sels. The corresponding implementation details are as fol-
lows.

1. Total variation by l1 norm: TV-L1 (total variation by l1
norm) model is adopted to decompose the retinal image
into smooth cartoon part and rough texture part. Here we
select the texture part and transform it into a gray image
as the feature map.
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Fig. 1 Overall framework of the proposed method

2. Hessian filtering: eigenvalues of Hessian filtered retinal
image are used to generate the probability function. By
adjusting the filter parameters, vessels of different thick-
ness can be detected as the feature map.

3. Line structure detection: bottom and top hat transfor-
mations of different line structure elements are applied
on original images respectively. Then the feature map is
acquired by subtracting the top hat transformation map
from that of bottom hat transformation.

4. Bottom hat transformation: the morphological dilation
and erosion operations are applied on retinal images with
a disk structural element. Then, by subtracting the origi-
nal retinal images from the obtained images, we get the
feature map.

5. Retinex: illumination part of retinal image is estimated
first. Then, the illumination part is removed from the
original image so that reflection part containing essen-
tial details can be obtained as the feature map.

6. CLAHE: we transfer retinal images into Lab color space,
and implement CLAHE algorithm on channel L to
enhance the contrast between vessel structures and the
background.

2.2 Vessel classification

For LC-KSVD framework [25], classification labels for input
samples should be assigned to learn a discriminative dic-
tionary. By analyzing retinal images, we found that the
majority of vessel pixels belong to thick vessels while oth-

Fig. 2 Vessel classification a original image, b ground-truth vessels, c
thick vessel structures, d thin vessels

ers belong to thin vessels. But the existing machine learning
based methods treat all vessel pixels with equal impor-
tance, which may lead to poor accuracy in detecting thin
vessels. Based on this, we segment the ground-truth anno-
tations into thick and thin vessels. As shown in Fig. 2,
by classifying all annotated ground-truth vessels into thick
vessel structures (shown in red in Fig. 2c or thin vessel
structures (shown in yellow in Fig. 2d), a vessel thick-
ness classification label can be assigned for each image
block.

2.3 Dictionary learning

Byusing the feature representationmethods, any input retinal
image can be represented by a feature vector. To construct
training samples for theLC-KSVDbaseddictionary learning,
here we divide feature maps and the corresponding ground-
truth images into numerous overlapping blocks with a size
of 10 × 10. Then training samples, including both thin and
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thickvessel blocks, are randomly selected. For the i-th sample
block, we can construct a set of unique feature vector xi ,
ground-truth vector yi and label vector zi . Here, six feature
blocks are directly stacked to construct xi for training so that
the cross-modality characteristics of these feature maps can
be fused for segmentation. With these vectors, we further
construct the feature matrix X, ground-truth matrix Y, and
classification matrix Z for training.

X = [x1, x2, . . . , xN ] ∈ � 6n×N (1)

Y = [y1, y2, . . . , yN ] ∈ � n×N (2)

Z = [z1, z2, . . . , zN ] ∈ � 2×N (3)

where n is the number of pixels in a block, n = 100 in
experiment, and N is the amount of selected sample blocks.
For classification matrix Z, different elements indicate dif-
ferent vessel thickness with a column vector zi = [0, 1]T
(thin vessel) or zi = [1, 0]T (thick vessel).

To learn the dictionary and transformationmatrix, the LC-
KSVD based training model is expressed as:

<D,M,H,A>

= argmin
D,M,H,A

‖X − DA‖22 + α‖Y − MA‖22 + β‖Z − HA‖22
s.t. ∀i, ‖ai‖ ≤ T0

(4)

where D ∈ � 6n×K is the learned dictionary, A ∈ � K×N is
the sparse matrix, H ∈ � 2×K is the vessel thickness clas-
sification matrix, and M ∈ � n×K is a linear transformation
matrix that transforms features into vessel images. The first
term ‖X − DA‖22 is the reconstruction error of feature maps.
The second term ‖Y − MA‖22 is the reconstruction error of
ground-truth vessels. The third term ‖Z−HA‖22 is the thick-
ness classification error. In these matrices, K is the number
of dictionary atoms, α and β are parameters to control the
contribution of these terms, ai represents the i-th sparse coef-
ficient in A, and T0 is a fixed least nonzero element to stop
the iteration.

To optimize Eq. (4), we construct Xnew and Dnew:

Xnew = (XT,
√

αYT,
√

βZT)T (5)

Dnew = (DT,
√

αMT,
√

βHT)T (6)

Then, Eq. (4) is equivalent to solve the following formula:

<Dnew,A> = argmin
Dnew,A

‖Xnew − Dnew‖22
s.t. ∀i, ‖ai‖ ≤ T0

(7)

Equation (7) is a standard sparse coding problem, which
can be efficiently solved by KSVD algorithm. Thus, the
desired D and M can be easily separated from Dnew.

2.4 Vessel segmentation

At the vessel segmentation stage, given an original retinal
image, we use the same pre-processing and feature extrac-
tionmethods to construct feature vectors for non-overlapping
image blocks. And sparse coefficients for reconstructing a
feature vector x̂i can be obtained by solving the following
optimization function, w.r.t. the learned dictionary D:

argmin
âi

‖x̂i − Dâi‖22, s.t. ∀i, ‖âi‖ ≤ T0 (8)

Equation (8) is efficiently solved using the batch orthog-
onal matching pursuit (OMP) algorithm. Then, the corre-
sponding vessel vector vi can be acquired with the transfor-
mation matrixM and the obtained sparse coefficients, which
can be calculated as:

vi = Mâi (9)

Then, all pixels in the segmented vessel map are classified
into vessel and non-vessel pixels by:

V(x, y) =
{
1, v(x, y) ≥ T1
0, otherwise

(10)

whereV(x,y) is the segmented vessel, and T1 is the threshold
to obtain the binary vessel. In this experiment, we determine
the optimal threshold T1 by maximizing the accuracy value
as described in paper [15].

2.5 Post-processing

Since the obtained vessels may contain noises, small mis-
classified non-vessel structures and some undetected vessel
holes, to reduce errors caused by these factors and get smooth
segmentation results, a post-processing operation is per-
formed with two steps: (1) Noise removal: connected areas
below 20 pixels (determined by experiments) are removed to
decrease noises and tiny misclassified non-vessel structures.
(2) Hole-filling: connected holes below 20 pixels are filled to
connect breakpoints and tiny holes between vascular pixels.
An example of post-processing operation is shown in Fig. 3.
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Fig. 3 Post-processing, a original image, b initially extracted vessels,
c noise removal, d hole-filling

Fig. 4 Segmentation results on HRF, the first row shows original
images, the second row shows segmentation images, and the third row
shows manual annotations

3 Experiments

3.1 Databases

We conduct experiments on HRF [26], DRIVE [27] and
STARE [28] for performance evaluation. All evaluation met-
rics are calculated within the field of view (FOV).

HRF dataset contains 45 color retinal images with a reso-
lution of 3504 × 2336 and at 60◦ FOV, in which 15 images
are from healthy patients, 15 images are from patients with
diabetic retinopathy, and the rest 15 images are from patients
with glaucoma. Only one ground truth is provided by a group
of experts. Since the resolution of the image is relatively high,
to reduce the computational cost of our method, all images
are down-sampled to a resolution of 876 × 584.

DRIVE dataset is composed of 40 retinal images captured
at 45◦ FOV with a resolution of 584 × 565. The database is
composed of a training and testing set, both containing 20
images. Two different benchmark annotations are provided
in testing set, but only one manual annotation is available
in training set. Thus, the first annotation is selected as the
ground truth.

STARE dataset contains 20 retinal images (ten of them
containing pathologies) captured at 35◦ FOV with a reso-
lution of 700 × 605. Two different manual annotations are
provided for each image. In the experiment, the first annota-
tion is chosen as the ground truth.

Since HRF and STARE have no strict training and testing
set, we employ leave-one-out cross validation. For DRIVE,
we select 15 representative images from the training set to
learn the dictionary and transformation matrix, and test all
images in the testing set.

Fig. 5 Segmentation results on DRIVE, the first row shows original
images, the second row shows segmentation images, and the third row
shows the manual annotations

Fig. 6 Segmentation results on STARE, the first row shows original
images, the second row shows segmentation images and the third shows
manual annotations

3.2 Evaluationmethodology

The performance is analyzed by comparing the segmentation
results with ground truths. Eight different evaluation metrics
are used [15], all of themare computed from true positivesTP,
true negatives TN, false positives FP, and false negatives FN.
Among these metrics, accuracy (ACC) measures the ratio of
correctly identified pixels against all pixels, specificity (SP) is
the ratio of pixels correctly classified as non-vessel against all
non-vessel pixels in the ground truth, while sensitivity (SE)
represents the ratio of pixels that are correctly classified as
vessel against all vessel pixels in ground truth. Positive pre-
dictive value (PPV) is the ratio of pixels classified as vessel
that are correctly identified, while negative predictive value
(NPV) represents the ratio of pixels classified as non-vessel
that are correctly identified. F1-score is the weighted mean
value of PPV and SE to measure the trade-off between PPV
and SE. Similarly, G-mean (G) is to evaluate the trade-off
between SP and SE.Matthews correlation coefficient (MCC)
is the correlation coefficient between segmented vessels
and the ground truths. Let S = (TP+FN)/M,P= (TP+FP)/M
and M = TP+TN+FP+FN. These evaluation metrics can be
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Table 1 Performance
comparison on HRF

Method ACC SP SE PPV NPV F1 G MCC

Odstrcilik [26] 0.9494 0.9669 0.7741 – – – 0.8651 –

Zhao [8] 0.9410 0.9420 0.7490 – – – 0.8400 –

Yu [4] 0.9514 0.9685 0.7810 – – – 0.8697 –

Orlando [15] – 0.9584 0.7874 0.6630 – 0.7158 0.8686 –

Yan [18] 0.9437 0.9592 0.7881 0.6647 – – 0.8695 –

Work [20] 0.9467 0.9688 0.7265 0.7003 0.9725 0.7094 0.8381 0.6825

Proposed 0.9517 0.9676 0.7915 0.7079 0.9790 0.7449 0.8745 0.7125

Table 2 Performance
comparison on DRIVE (2nd
means the second manual
annotation of DRIVE)

Method ACC SP SE PPV NPV F1 G MCC

Fraz [7] 0.9422 0.9742 0.7302 0.8112 0.9600 – 0.8434 0.7359

Fraz [29] 0.9430 0.9768 0.7152 0.8205 0.9587 – 0.8358 0.7333

Vega [30] 0.9412 0.9600 0.7444 – – 0.6884 0.8454 0.6617

You [31] 0.9434 0.9751 0.7410 – – – 0.8500 –

Al-Diri [32] 0.9452 0.9551 0.7282 – – – 0.8340 –

Orlando [15] – 0.9684 0.7897 0.7854 – 0.7857 0.8741 0.7556

2nd 0.9477 0.9744 0.7665 0.8162 0.9661 0.7873 0.8634 0.7601

Work [20] 0.9401 0.9689 0.7373 0.7770 0.9628 0.7545 0.8483 0.7258

Proposed 0.9421 0.9696 0.7560 0.7854 0.9644 0.7673 0.8555 0.7365

Table 3 Performance
comparison on STARE (2nd
means the second manual
annotation of STARE)

Method ACC SP SE PPV NPV F1 G MCC

Fraz [7] 0.9423 0.9660 0.7318 0.7294 0.9700 – 0.8408 0.6908

Fraz [29] 0.9437 0.9665 0.7409 0.7363 0.9709 – 0.8462 0.7003

Vega [30] 0.9483 0.9671 0.7019 – – 0.6616 0.8240 0.6400

You [31] 0.9497 0.9750 0.7260 – – – 0.8414 –

Al-Diri [32] – 0.9681 0.7521 – – – 0.8533 –

Orlando [15] – 0.9738 0.7680 0.7740 – 0.7644 0.8628 0.7417

2nd 0.9352 0.9387 0.8951 0.6425 0.9884 0.7401 0.9142 0.7225

Work [20] 0.9364 0.9627 0.7046 0.6984 0.9665 0.6904 0.8202 0.6620

Proposed 0.9477 0.9733 0.7202 0.7566 0.9689 0.7260 0.8312 0.7045

defined as:

ACC = (TN + FP)/(TN + TP + FN + FP) (11)

SP = TN/(TN + FP) (12)

SE = TP/(TP + FN) (13)

PPV = TP/(TP + FP) (14)

NPV = TN/(TN + FN) (15)

F1 = (2 × PPV × SE)/(PPV + SE) (16)

G = √
SE × SP (17)

MCC = (TP/M − S × P)/(P × S × (1 − S) × (1 − P))

(18)

Fig. 7 Segmentation comparisons, a original images, b manual anno-
tations, c segmentation results in paper [20], d segmentations using the
proposed method
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Fig. 8 ROC comparisons between work [20] and the proposed method
on HRF, DRIVE, and STARE databases

3.3 Segmentation results

Figures 4, 5 and 6 show partial segmentation results on
HRF, DRIVE and STARE databases. As can be observed,
our method can extract abundant vascular branches with
different thickness by adopting multiple features for the dis-
criminative dictionary learning. However, for pathological
cases in STARE, our method may incur misclassified non-
vessel structures in hemorrhage areas as presented in Fig. 6.
Also, we can notice that vessels segmented in HRF obtains
more thin vessels than STARE and our method may have
slightly block effect.

3.4 Comparison with other methods

Wehave conducted comparisonswith our previouswork [20]
and other methods. Tables 1, 2 and 3 show segmentation
comparisons on HRF, DRIVE and STARE respectively (2nd

means the second annotation).Herewe can obtain the follow-
ing observations: (1) For DRIVE, despite our method shows
a lower SP compared with Fraz’s methods [7,29], but it still
has a larger SE.Asmentioned before, SE represents the capa-
bility for distinguishing vascular details. (2) For STARE, our
method has relatively higher PPV and SP. Since SP mea-
sures the capability for distinguishing non-vessels, it means
that our method obtains less false positive pixels. (3) For
HRF, since limited methods are reported in the literature,
our method gives higher metric values than other methods
except for SP. (4) Compared with our previous work, metric
values are significantly improved on all databases. Particu-
larly, the improvement in SE is larger than that in SP and PPV,
which shows that more vessel details are correctly detected
as shown in Fig. 7. The reason may be that only a single fea-
ture map is used for training in our previous work, but in the
proposed method, we adopt multiple feature maps and add
vessel thickness labels for trainingwith LC-KSVD instead of
KSVD. Figure 8 shows the ROC comparisons. (5) The deep
learning method [20] shows better performance on STARE
and DRIVE databases than our method.

3.5 Cross-database validation

To further analyze the performance, we carry out cross-
databasevalidation for assessment.Weusedictionary learned
from one dataset (e.g., DRIVE, HRF or STARE) to test per-
formance on another. Results are presented in Table 4. As can
be seen, sensitivity in all databases is decreased when using
other training databases for training. For example, sensitivity
on HRF is decreased to 0.7626 when trained on DRIVE, and
0.4584 when trained on STARE. The reason is that HRF has
thinner vessels compared with DRIVE, and STARE contains
more pathological and low-quality images. Also, we select
10 images from each database to construct a hybrid training
set with 30 images using leave-one-out strategy. As can be
observed, the performance of hybrid training is acceptable.
This phenomenon indicates that selecting suitable training

Table 4 Performance of cross-database validation

Database ACC SP SE PPV NPV F1 G MCC

HRF (trained on DRIVE) 0.9505 0.9692 0.7626 0.7119 0.9762 0.7322 0.8591 0.7084

STARE (trained on DRIVE) 0.9454 0.9758 0.6654 0.7736 0.9643 0.6904 0.7930 0.6769

DRIVE (trained on HRF) 0.9423 0.9822 0.6769 0.8492 0.9542 0.7499 0.8142 0.7263

STARE (trained on HRF) 0.9488 0.9818 0.6455 0.8170 0.9624 0.6935 0.7817 0.6866

HRF (trained on STARE) 0.9367 0.9772 0.4584 0.6552 0.9554 0.5225 0.6645 0.5088

DRIVE (trained on STARE) 0.9354 0.9870 0.3240 0.6773 0.9455 0.4231 0.5523 0.4309

HRF (hybrid training) 0.9492 0.9727 0.7039 0.7163 0.9717 0.7059 0.8264 0.6806

DRIVE (hybrid training) 0.9405 0.9730 0.7188 0.7973 0.9595 0.7527 0.8353 0.7223

STARE (hybrid training) 0.9472 0.9799 0.6535 0.7985 0.9624 0.6991 0.7905 0.6855
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samples is essential. In the future, we expect to construct a
larger training dataset that can achieve stable performances
on all databases.

4 Conclusions

In this paper, we have presented a new retinal blood vessel
segmentation method that segments vessel structures via dic-
tionary learning. Rather than using conventional dictionary
learning framework, our approach adopts multiple features
to learn the discriminative dictionary. Our contributions are
mainly in two aspects. First, we use LC-KSVD framework
that adds a vessel thickness label term to supervise dictio-
nary learning. Second, we extract multiple feature maps for
feature representation. Experiments on benchmark databases
demonstrate that our method can yield good segmentation
results. In the future, we plan to design better sample selec-
tion and feature representation methods for training. We also
expect to apply our method on other images to improve the
cross-database capability.
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