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Abstract. Underwater salient object detection seeks to pinpoint the
most vital elements in underwater environments, offering considerable
promise for underwater exploration. Considering the preference for low-
complexity algorithms in underwater applications to maximize overall
system efficiency, this paper proposes EffiSeaNet, a lightweight network
designed to provide an effective solution for salient object detection
in underwater scenarios. On the one hand, EffiSeaNet incorporates a
parameter-free image enhancement block to mitigate the effects of im-
age degradation caused by water. This block effectively addresses issues
such as color distortion and reduced visibility, which are common chal-
lenges in underwater environments. On the other hand, we develop a
customized lightweight network structure incorporating a novel cross-
layer fusion strategy to efficiently capture and merge features. This en-
hances the network’s ability to handle the variability and complexity of
underwater objects and scenes while maintaining a low computational
load. Extensive experiments on three public datasets demonstrate that
our innovative designs achieve remarkable results while maintaining a
low model size and computational complexity. This efficiency and ef-
fectiveness make our approach highly suitable for practical underwater
applications where resources are limited, yet high precision is essential.
Our code and results will be accessible to the public.

Keywords: Underwater Image · Salient Object Detection · Lightweight
Model · Feature Fusion

1 Introduction

Underwater salient object detection (USOD) is an emerging subfield of salient
object detection (SOD) [21], created to meet the increasing demands of un-
derwater exploration. Despite the heightened focus on this area, USOD research
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Fig. 1: The results of comparative experiment on datasets of USOD10K, UFO120 and
USOD. The X-axis represents the number of parameters (M) (Lower is better), and the
Y-axis represents accuracy (Higher is better). The color depth represents computational
complexity in terms of FLOPs (G) (Redder is better.)

remains in its infancy [12,27]. As a foundational aspect of underwater image pro-
cessing, USOD is essential for visually guided underwater robots. For instance,
autonomous underwater vehicles (AUVs) depend on saliency estimation for nav-
igation and operational decision-making [11]. In recent years, some researchers
have started exploring the integration of USOD algorithms into platforms like
underwater robots. However, in real-world conditions, underwater images fre-
quently suffer from severe contrast and color distortions. In addition, the re-
sources available for underwater robots, cameras, and other related equipment
are often limited.

Existing salient object detection (SOD) methods face several challenges when
applied to underwater environments [19,22,37,39,44,49]. Traditional SOD algo-
rithms are typically designed for terrestrial or general-purpose image processing,
which means that they are not well suited to handle the unique conditions of
underwater imaging. These conditions include issues like light absorption, scat-
tering, and the presence of particulate matter, all of which can significantly
degrade image quality. Furthermore, the diversity of underwater scenes, with
their varying levels of visibility and color distortion, adds another layer of com-
plexity that existing SOD methods are not equipped to manage effectively. As a
result, there is a pressing need for specialized SOD techniques that can address
these specific underwater challenges. To detect interesting objects in complex
underwater environments, several USOD methods [12, 18] have been proposed.
By considering the degradation effects into account, these solutions show promis-
ing performance. However, existing USOD models often have a large number of
parameters and high computational complexity, limiting their application in real-
world underwater scenarios. Fortunately, there are a lot of lightweight structures
and networks for visual tasks of land images [3, 14, 31, 34, 40, 41, 43, 47]. These
methods provide valuable guidance for the design of lightweight salient object
detection networks specifically tailored for underwater environments.
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Given the aforementioned challenges, the objective of this paper is to develop
an efficient network for real-time salient object detection in underwater envi-
ronments. To accomplish this objective, we introduce EffiSeaNet, a lightweight
encoder-decoder framework via parameter-free image enhancement and multi-
scale features fusion. To handle the degraded underwater images, we introduce
the parameter-free image enhancement (PEIE) module. This module is based on
linear channel normalization, which performs contrast stretching within both the
RGB and HSV color spaces of the image. As a result, the enhanced images are
more suitable for the USOD task, leading to significant performance improve-
ments. To handle variable underwater objects and scenes while maintaining a
low computational cost, we propose the cross-scale feature fusion (CSFF) mod-
ule, which is composed of three group fusion (GF) blocks. Specifically, the GF
conducts channel-wise grouping of feature blocks derived from three adjacent
encoding stages. Subsequently, grouped feature blocks are meticulously fused by
employing atrous convolutions with corresponding rates. As shown in Fig. 1, by
these designs, our EffiSeaNet achieves high detection accuracy while maintain-
ing minimal resource consumption. In summary, our main contributions are as
follows:

– We introduce EffiSeaNet, a framework that integrates lightweight encoders
and decoders within a multi-scale feature fusion architecture. EffiSeaNet
includes a parameter-free image enhancement module aimed at alleviating
image degradation effects induced by water.

– We propose a new cross-layer feature fusion module with group interaction
and integration mechanisms. This innovative design significantly enhances
the network’s capability to represent a wide range of diverse underwater
objects and scenes effectively.

– Extensive experiments on three public datasets validate that the proposed
network surpasses advanced methods in both computational efficiency and
detection accuracy.

2 Related Work

2.1 Salient Object Detection

SOD has made significant progress in the past few decades [2, 19, 48]. MLM-
SNet [38] takes advantage of the supervision of the foreground boundary and
edges for SOD. AADFNet [50] generates local saliency cues by dilated convolu-
tions with a small rate and global saliency cues by dilated convolutions with a
large rate. GateNet [46] designs a gated dual branch structure to build cooper-
ation between different levels of characteristics and improve the discriminabil-
ity of the entire network. U2Net [26] obtains intrastate multiresolution features
without reducing feature map resolution. CANet [29] presents a context-aware
attention module that detects salient objects by simultaneously constructing
connections between each image pixel and its local and global contextual pixels.

1488



4 Q. Wu et al.

EDN [39] uses an extreme down-sampling method to effectively learn global fea-
tures and Scale-Correlated Pyramid Convolution in the decoder to recover local
details. Despite substantial progress in SOD, most current methods are tailored
for high-quality terrestrial images. However, underwater scenes suffer from sig-
nificant image degradation and have specific requirements for model complexity.
Consequently, existing SOD methods cannot achieve satisfactory performance
when applied directly to underwater environments.

2.2 Underwater Salient Object Detection

Recently, USOD has attracted more and more attention due to its importance
and challenges [28]. Existing USOD methods can be divided into traditional
method and learning-based methods. The former explores low-level visual fea-
tures such as color, texture, and contours to obtain saliency maps of underwater
images. Such features are commonly manually designed. For example, Cui et
al. [6] proposes an USOD model based on an enhanced histogram equaliza-
tion algorithm to address the issue of low visual quality in underwater images.
Chen et al. [5] proposes a novel USOD method by combining hand-crafted 2D
features (color and intensity) and hand-crafted 3D features (depth map). Re-
cently, learning-based methods have become a research hotspot. Islam et al. [18]
develops an effective solution for saliency-guided visual attention modeling by
integrating bottom-up and top-down learning within an encoder-decoder archi-
tecture. Islam et al. [17] design an end-to-end training pipeline to jointly learn the
saliency prediction on a shared hierarchical feature space and present a dataset
of UFO-120 with great contribution. Hong et al. [12] constructs a large-scale
USOD dataset named USOD10K. Meanwhile, the authors design a straight-
forward hybrid architecture for USOD. The entire framework is built upon an
encoder-decoder structure incorporating transformer and convolutional blocks.

2.3 Efficient Neural Network

In recent years, there has been a surge of research focused on developing lightweight
and hardware-efficient convolutional neural networks specifically designed for
mobile vision tasks. This trend reflects the growing demand for efficient neu-
ral network architectures that can operate effectively on resource-constrained
mobile devices. [14, 16]. For instance, MobileNet [13, 14, 32] propose separable
convolution and inverse residual bottlenecks. The former acts as a substitute for
traditional convolution, significantly lowering computational demands. Mean-
while, the latter addresses the problem of vanishing gradients. Together, these
approaches effectively reduce the parameter count while enhancing model effi-
ciency. ShuffleNet [23, 45] which introduces techniques such as pointwise group
convolution and channel shuffle, aimed at reducing network capacity and en-
hancing lightweightness. BiSeNet [40,41] leverages dual-branch paths to capture
low-level details and high-level context information to reduce model complexity
while maintaining model performance. MixNet [33] proposes a mixed depth-
wise convolution approach that incorporates multiple-sized convolution kernels
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Fig. 2: The detailed architecture of EffiSeaNet. First, the parameter-free image en-
hancement module (PFIE) is employed to enhance the input image quality, making it
more suitable for the task at hand. Then, four encoders ({e0 → e4}) are utilized to ex-
tract multi-scale representations. Following this, the cross-layer feature fusion Module
(CSFF) refines the learned features. Finally, the decoder ({d1 → d3}) gradually upsam-
ples the hierarchical features. DWConv refers to Depth-Wise Convolution. PWConv
denotes Point-Wise Convolution. SE refers to squeeze-and-excitation module [15].

to enhance accuracy and reduce model complexity. EGE-UNet [31] groups input
features and performs Hadamard Product Attention mechanism (HPA) on dif-
ferent axes to extract pathological information from diverse perspectives. In our
work, we draw inspiration from the above-mentioned methods, but our model
employs these methods uniquely.

3 Method

In this section, we begin by introducing the overall architecture of EffiSeaNet.
Following this, we present two key components: the parameter-free image en-
hancement module and the cross-layer feature fusion module. Lastly, we provide
a detailed explanation of the loss functions used to train our pipeline.

3.1 Overall Structure

As shown in Fig. 2, EffiSeaNet is built on a U-shaped architecture. The encoder
and decoder are composed of lightweight modules called CGB, which consists of

1490



6 Q. Wu et al.

several PWConv, DWConv, SE, and Sigmoid layers. In the encoder part, each
CGB dowsamples (Maxpooling) the feature by a factor of 1/2. Correspondingly,
each CGB upsamples (Bilinear Interpolation) the feature by a factor of 2 in the
decoder part. The core design of EffiSeaNet is the PFIE and CSFF modules.
We use PEIE to enhance the original underwater image (regarded as e0). The
purpose of this process is to reduce the impact of image degradation. The multi-
scale features learned from {e0} and three CGB {e1 → e4} are inputted into
CSFF for feature interaction and fusion. The processing of the proposed CSFF
can be expressed as:

g1, g2, g3 = CSFF ({e0 → e4}), (1)

where, g1, g2, g3 represent the outputs of CSFF. The decoder is mirror-aligned
with the encoder, creating a symmetrical structure that facilitates the genera-
tion of multi-scale masks. Specifically, we use PWConv and Upsample layers to
produce the salient mask at each scale. Finally, we calculate the loss functions
and optimize the entire network based on these multi-scale predictions and the
ground-truth map.

3.2 Parameter-Free Image Enhancement

In order to reduce the impact of underwater image degradation on salient object
detection, we propose a parameter-free pre-processing method based on the chan-
nel linear normalization principle. First, we normalize and stretch the contrast
of the image color in channel dimensions of R, G, and B. Then, the optimized
RGB image is converted into the HSV space. We perform a same normalization
in the three dimensions of hue, saturation, and value. Stretching saturation and
value can generate elements with a wider color range, while hue can increase the
true color of the image and solve lighting problems. Channel linear normalization
in RGB and HSV color spaces enhances the contrast and color of the degraded
underwater image. Mathematically, the above normalization can be defined as:

fn =
pi − pmin

pmax − pmin
, (2)

where i refers to the index of image pixels, pmax and min refer to the maxi-
mum and minimum values in each channel, respectively. Finally, we convert the
enhanced image to RGB space:

e0 = RGB(fn(HSV (fn(x)))), (3)

where e0 refers to the final output of PEIE which we regard as first encoder
block, and RGB(x) and HSV (x) are the corresponding image space conversion
projection. PEIE is sample yet effective. With PEIE, our method improves the
S-measure [8], mean E-measure [9], weighted F-measure [24], and mean absolute
error with large margins (see Tab. 3).
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Fig. 3: Overview of cross-scale feature fusion (CSFF) and group fusion (GF) block.

3.3 Cross-Scale Feature Fusion

To address the variability and complexity of underwater objects and scenes while
maintaining a low computational load, we propose a cross-scale feature fusion
(CSFF) module and group fusion (GF) blocks. As depicted in Fig. 3, CSFF is
responsible for receiving multi-scale features from {e0 → e4}. The internal GF
is responsible for fusing the neighbor features. More specifically, GF initially
selects three neighboring scale features. It then uses upsampling for high-level
features and downsampling for low-level features to match their sizes with the
middle-level features.

Then, GF splits each matched feature into four groups along the channel
dimension:

fk
1 , f

k
2 , f

k
3 , f

k
4 = split(fk), k ∈ {ei−1, ei, ei+1}, (4)

where ei denotes the encoder and fk refers to the matched feature map of the
encoder. Next, it concatenate the adjacent three levels of splited feature blocks
in each group as:

sj = Concat(fk
j ), (5)

where j ∈ {1, 2, 3, 4} is the group index. Subsequently, we perform feature fusion
by layer normalization (LN) [1] and dilated convolutions (DConv) [42] with a
kernel size of 3 and dilation rates of {1, 2, 5, 7} with corresponding to {s1 → s4}
to obtain four fused feature maps:

F i
j = DConvj(sj), (6)
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where j ∈ {1, 2, 3, 4} denotes the group index. To further facilitate information
interaction between features of diverse scales, we employ point-wise convolution
(PWConv) [14] to process the four feature maps concatenated along the channel
dimension, yielding an output feature map that incorporates multi-scale inter-
action information. This process is represented in the Fig. 2 as Feature Fusion,
so there is:

gi = PWConv(Concat(F i
j )), (7)

where gi denotes the output of the GF module.

3.4 Loss Function

We employ binary cross-entropy and dice loss [20] to optimize our network.
Binary cross-entropy evaluates the performance by calculating the difference
between the predicted and actual binary labels, penalizing incorrect predictions.
Dice loss, on the other hand, compares the similarity of two binary classifications
of an image by measuring the overlap between the predicted and ground-truth
masks. In this work, binary cross-entropy loss is defined as:

LBCE = − 1

N

N∑
i

yilog(p(yi)) + (1− yi)log(1− p(yi)), (8)

where i represents the index of the pixel, p(yi) denotes the predicted value of the
pixel, and yi represents the corresponding ground-truth. Dice loss is expressed
as:

LDice = 1−
2
∑N

i yip(yi) + ϵ∑N
i (yi)2 +

∑N
i (p(yi))2 + ϵ

, (9)

where ϵ is a small positive value. Its purpose is to avoid division by zero in
the calculation process. Here we choose a value of e−7. To generate an accurate
mask, the overall loss function L can be expressed as:

L =

3∑
s=0

λs × ℓs, (10)

where ℓs = Ls
BCE + Ls

Dice, s denotes the scale index, λs represents the weight.
We set λ0 = 1, λ1 = 0.5, λ2 = 0.4, and λ3 = 0.3, empirically.

4 Experiments

4.1 Experimental Settings

Datasets. We train the proposed model on the USOD10K training set [12],
which includes 7,178 underwater images with pixel-level annotations. These im-
ages are sourced from 12 distinct underwater scenes. The salient objects in
the USOD10K dataset are categorized into 70 classes, encompassing fish, ruins,
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Table 1: Accuracy comparisons on three datasets. The best results are highlighted in
red, and the second-best results are indicated in blue.

Method
USOD10k [12] UFO120 [17] USOD [18]

Sm Eϕ Fw
m MAE Sm Eϕ Fw

m MAE Sm Eϕ Fw
m MAE

BiseNetV1 [41] 0.892 0.929 0.855 0.031 0.792 0.859 0.766 0.118 0.844 0.910 0.814 0.064

BiseNetV2 [40] 0.883 0.913 0.829 0.038 0.783 0.843 0.764 0.122 0.954 0.983 0.957 0.013

MobileNetV1 [14] 0.822 0.899 0.771 0.052 0.701 0.811 0.677 0.149 0.825 0.887 0.803 0.098

MobileNetV2 [32] 0.875 0.934 0.848 0.036 0.729 0.819 0.695 0.139 0.828 0.908 0.786 0.077

MobileNetV3 [13] 0.862 0.929 0.828 0.037 0.744 0.824 0.704 0.136 0.922 0.971 0.922 0.024

MobileNeXt [47] 0.876 0.940 0.854 0.034 0.747 0.818 0.725 0.132 0.830 0.920 0.800 0.062

CSNet [10] 0.872 0.926 0.852 0.937 0.755 0.783 0.663 0.148 0.924 0.977 0.943 0.019

SAMNet [22] 0.886 0.938 0.861 0.032 0.752 0.813 0.719 0.126 0.926 0.975 0.920 0.024

UNeXt [34] 0.801 0.872 0.712 0.057 0.734 0.803 0.692 0.142 0.940 0.971 0.933 0.021

MobileVitV2 [25] 0.872 0.915 0.798 0.043 0.767 0.766 0.671 0.160 0.948 0.971 0.939 0.022

EMO [43] 0.873 0.933 0.842 0.035 0.709 0.783 0.663 0.148 0.934 0.976 0.934 0.021

FasterNet [3] 0.850 0.917 0.809 0.043 0.709 0.785 0.670 0.156 0.877 0.931 0.919 0.036

FastVit [35] 0.889 0.934 0.840 0.034 0.762 0.802 0.714 0.134 0.958 0.977 0.954 0.017

RepVit [36] 0.883 0.937 0.842 0.032 0.752 0.818 0.726 0.135 0.944 0.979 0.947 0.017

EffiSeaNet 0.893 0.935 0.872 0.030 0.806 0.839 0.787 0.129 0.967 0.977 0.960 0.014

divers, underwater robots, and more. We evaluate the proposed method on three
datasets including test set of USOD10K [12] , UFO120 [17] and USOD [22]. These
datasets consist of 1,026, 1500 and 300 underwater images with corresponding
pixel-level labels, respectively.

Implementation Details. Our model is developed with the PyTorch frame-
work, and all experiments are performed on a single NVIDIA RTX 3080Ti GPU.
During the training phase, the input image is resized to 256×256. We apply vari-
ous data augmentation methods, such as horizontal flip, vertical flip, and random
rotation to increase the diversity. We use Adam as the optimizer and Multi-Step-
LR as the learning rate scheduler. The model is trained for a total of 800 epochs.
After the first 400 epochs, the learning rate is reduced by 50%. The batch size
is fixed at 16, and no pretraining strategies involving additional datasets like
ImageNet [7] are employed.

Evaluation Metrics. We use S-measure (Sm) [8], mean E-measure (Eϕ) [9],
weighted F-measure (Fw

m) [24], and mean absolute error (MAE) to objectively
evaluate each method. Among them, S-measure calculates the structural simi-
larity between the predicted saliency map and the ground-truth map. Mean E-
measure computes the similarity for the binarized predicted map and the binary
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Table 2: Efficiency comparisons. The best results are highlighted in red, and the
second-best results are indicated in blue.

Method Params (M) FLOPs (G)

BiseNetV1 [41] 13.27 3.716

BiseNetV2 [40] 3.340 3.083

MobileNetV1 [14] 13.68 28.901

MobileNetV2 [32] 2.173 0.519

MobileNetV3 [13] 1.002 0.136

MobileNeXt [47] 14.84 5.289

CSNet [10] 0.780 0.610

SAMNet [22] 1.330 0.329

UNeXt [34] 1.472 0.573

MobileVitV2 [25] 7.380 3.009

EMO [43] 1.397 0.493

FasterNet [3] 4.052 1.324

FastVit [35] 7.551 2.201

RepVit [36] 2.527 0.645

EffiSeaNet 0.101 0.237

ground-truth map. Weighted F-measure solves the problems of F-measure that
may cause interpolation flaw, dependency flaw, and equal-importance flaw [24].
Since underwater applications favor lightweight models, we calculate model pa-
rameters (M) and FLOPs (G) to show the effectiveness of our solution.

4.2 Comparison with Other Methods

Quantitative Comparison. Tab. 1 presents the accuracy comparisons on three
datasets. 14 representative algorithms are selected as the competitors. It’s im-
portant to note that there are few publicly available USOD methods, and we
do not include RGBD-related approaches [12]. As observed, EffiSeaNet achieves
promising performance with the best Sm, Fw

m, and MAE scores in USOD10K,
the best Sm and Fw

m scores in UFO120, and the bset Sm and Fw
m scores in USOD.

Among the competitors, BiseNetV1 and BiseNetV2 achieve relatively high per-
formance due to their specific fusion mechanisms. These models effectively learn
rich spatial information with a sizable receptive field. We further compare the
efficiency of all methods in Tab. 2. From the table, it is evident that the proposed
EffiSeaNet is highly efficient. EffiSeaNet comprises approximately 0.1 million pa-
rameters and 0.237 billion FLOPs, which are significantly lower than those of
the other methods. In summary, Tab. 1 and Tab. 2 demonstrate that our method
effectively balances computational complexity and segmentation performance.

Qualitative Comparison. Fig. 4 presents qualitative evaluation results. For
a comprehensive comparison, we chose three samples from each dataset, each
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Fig. 4: Qualitative comparisons on USOD10K (first three rows), UFO120 (middle three
rows) and USOD (last three rows).

Table 3: The role of CSFF and PEIE. The the best results are highlighted.

Setting USOD10k [12] UFO120 [17] USOD [18]

CSFF PEIE Sm Eϕ Fw
m MAE Sm Eϕ Fw

m MAE Sm Eϕ Fw
m MAE

0.853 0.914 0.793 0.046 0.700 0.760 0.644 0.163 0.891 0.904 0.894 0.032

✓ 0.862 0.842 0.802 0.044 0.712 0.766 0.688 0.156 0.918 0.923 0.933 0.029

✓ 0.875 0.929 0.845 0.037 0.787 0.814 0.734 0.139 0.947 0.966 0.933 0.021

✓ ✓ 0.893 0.935 0.872 0.030 0.806 0.839 0.766 0.129 0.967 0.977 0.960 0.014

with different objects and distortions. EffiSeaNet consistently demonstrates su-
perior performance across all selected samples. Specifically, none of the methods
accurately detect salient objects in the image in the eighth row. UNeXt, EMO,
and FasterNet fail to handle the image in the first row adequately, while Mo-
bileNetV3 and SAMNet struggle with the image in the fifth row. Compared to
ground truth (GT), competing methods exhibit inaccurate boundaries and in-
complete object representations, whereas our method’s saliency maps are more
accurate and complete.

4.3 Ablation Studies

The role of CSFF and PEIE. CSFF and PEIE are to core modules in our
EffiSeaNet. In this subsection, we conduct ablation studies to understand the
role of these two modules. The results are listed in Tab. 3. Observationally,
when both CSFF and PEIE are simultaneously removed (leaving the network
similar to UNet [30]), there is a noticeable decline in performance, underscoring
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Table 4: Impact of different scale features. The the best results are highlighted. ‘Low’,
‘Mid’, and ‘High’ denotes three neighbor scale features.

Setting USOD10k [12] UFO120 [17] USOD [18]

Low Mid High Sm Eϕ Fw
m MAE Sm Eϕ Fw

m MAE Sm Eϕ Fw
m MAE

✓ 0.850 0.904 0.784 0.046 0.728 0.752 0.679 0.148 0.894 0.914 0.874 0.030

✓ 0.851 0.905 0.785 0.048 0.710 0.778 0.660 0.153 0.873 0.917 0.892 0.026

✓ 0.861 0.904 0.778 0.048 0.730 0.780 0.680 0.144 0.892 0.897 0.916 0.027

✓ ✓ 0.880 0.928 0.839 0.039 0.772 0.790 0.701 0.134 0.922 0.927 0.921 0.020

✓ ✓ 0.871 0.924 0.818 0.038 0.760 0.791 0.698 0.145 0.923 0.947 0.922 0.021

✓ ✓ 0.881 0.921 0.818 0.036 0.770 0.805 0.729 0.132 0.927 0.942 0.926 0.020

✓ ✓ ✓ 0.893 0.935 0.872 0.030 0.806 0.839 0.766 0.129 0.967 0.977 0.960 0.014

Table 5: Impact of the fusion mechanism. The bold indicates the best performance.

Method
USOD10k [12] UFO120 [17] USOD [18]

Sm Eϕ Fw
m MAE Sm Eϕ Fw

m MAE Sm Eϕ Fw
m MAE

Baseline 0.851 0.905 0.785 0.048 0.710 0.778 0.660 0.153 0.873 0.917 0.892 0.026

ASPP [4] 0.856 0.915 0.798 0.045 0.696 0.771 0.648 0.163 0.919 0.967 0.915 0.028

CSFF 0.893 0.935 0.872 0.030 0.806 0.839 0.766 0.129 0.967 0.977 0.960 0.014

the effectiveness of CSFF and PEIE. Removing either CSFF or PEIE individu-
ally results in the network failing to achieve satisfactory results across all three
datasets. This is because PEIE is designed to reduce the impact of image degra-
dation caused by water, while CSFF efficiently captures and merges features.
Both of these modules are essential for this task.

Impact of Different Scale Features in CSFF. Tab. 4 presents the abla-
tion studies of different scale features in CSFF. Specifically, we have tested six
variants. As shown in Tab. 4, in the first three variants, each GF within CSFF
receives only a single scale of features. In the last three variants, each GF within
CSFF receives two scale features. From the table, we can make the following
observations: 1) Without the feature fusion strategy, our model cannot achieve
satisfactory performance due to the complexity of underwater scenes and the
diversity of underwater objects; 2) Using two scale features from three neigh-
boring scale features can significantly enhance the network’s ability to capture
salient objects; 3) The proposed CSFF achieves the best results as our solution
thoroughly incorporates features of different scales, enhancing the network’s rep-
resentation ability.

Impact of the Fusion Mechanism. In this section, we explore the role of
the fusion strategy. Conceretly, we replace our CSFF with vanilla convolution
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Table 6: Effectiveness of auxiliary losses. The bold indicates the best performance.

Setting
USOD10k [12] UFO120 [17] USOD [18]

Sm Eϕ Fw
m MAE Sm Eϕ Fw

m MAE Sm Eϕ Fw
m MAE

ℓ0 .875 .913 .852 .038 0.722 0.781 0.635 0.144 0.927 0.968 0.924 0.025

ℓ0 + ℓ1 0.882 0.927 0.865 0.032 0.737 0.802 0.685 0.138 0.933 0.972 0.932 0.023

ℓ0 + ℓ1 + ℓ2 0.885 0.929 0.867 0.031 0.746 0.804 0.703 0.134 0.935 0.974 0.936 0.022

ℓ0 + ℓ1 + ℓ2 + ℓ3 0.893 0.935 0.872 0.030 0.806 0.839 0.766 0.129 0.967 0.977 0.960 0.014

(beaseline) and atrous spatial pyramid pooling (ASPP) [4]. The results are re-
ported in Tab. 5. We can observe that our method significantly outperforms
the baseline. This demonstrates that a specific fusion strategy is necessary as it
enhances the efficiency of feature utilization. Compared to ASPP, the proposed
fusion mechanism introduces a more efficient, adaptive approach to capturing
multi-scale contextual information, significantly enhancing the performance on
underwater image saliency detection tasks. Furthermore, our method is tailored
to address the specific challenges of underwater imagery, such as color distortion
and obscured details, ensuring robust performance in challenging conditions.

Effectiveness of Auxiliary Losses. In this paper, auxiliary losses are designed
to guide the EffiSeaNet in generating an accurate binary mask of the salient
object. Here, we conduct ablation studies to understand the role of these losses.
As shown in Tab. 6, the auxiliary losses can improve the USOD performance
to a certain extent. Specifically, EffiSeaNet uses three scale auxiliary losses (i.e,
ℓ0+ℓ1+ℓ2+ℓ3) achieves the best performance on all datasets. The reason is that
it offers robust supervision across various scales, which is beneficial for learning
discriminative representations.

5 Conclusion

This paper proposes EffiSeaNet, a lightweight network for underwater salient ob-
ject detection. EffiSeaNet starts by utilizing a parameter-free image enhancement
block to mitigate the impact of image degradation in underwater conditions, ad-
dressing challenges like color distortion and reduced visibility. To manage the
variability and complexity of underwater scenes efficiently and at low compu-
tational costs, we introduce a specialized lightweight network structure. This
structure incorporates a novel cross-layer fusion strategy designed to effectively
capture and integrate features across different layers of the network. Experi-
mental results on three public datasets demonstrate that EffiSeaNet achieves a
superior balance between computational cost and detection accuracy and con-
sistently outperforms existing methods. In the future, we plan to design more
sophisticated and lightweight network architectures for the detection of salient
objects underwater.
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