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Abstract—Binocular stereoscopic image retargeting (SIR) aims
to adjust 3D images into target aspect ratios. In recent years,
various SIR methods have been proposed, but there are few
researches on visual quality assessment. As a consequence,
we construct a benchmark stereoscopic image retargeting
quality assessment database (NBU-SIRQA), which contains 720
stereoscopic retargeted images generated by eight representative
SIR operators. Subjective test is conducted to obtain the mean
opinion score (MOS) for each stereoscopic retargeted image.
Additionally, we propose an objective SIRQA metric based on
grid deformation and information loss (GDIL). The main idea of
GDIL is to decompose the SIR operator into two transformations:
monocular image retargeting transformation and viewpoint
transformation. In each transformation, grid deformation and
information loss are extracted simultaneously to represent image
quality and 3D perception quality. Experimental results validated
on our established NBU-SIRQA database show the superiority
of our metric in measuring the quality of stereoscopic retargeted
images over the existing approaches.

Index Terms—Stereoscopic image retargeting, quality
assessment, monocular retargeting transformation, viewpoint
transformation, grid deformation, information loss.

I. INTRODUCTION

W ITH the popularity of stereoscopic 3D displays,
stereoscopic image retargeting (SIR) brings great

requirements for displaying images on different devices with
specified aspect ratios and resolutions [1]. Especially, with
the diversity of 3D display devices, such as phones, TVs and
cinema screens, content adaptation via SIR should not only
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match the target aspect ratios and resolutions, but also adapt the
different depth ranges. Although state-of-the-art SIR methods
can handle the task for 3D images, it is still unclear whether a
stereoscopic image can be successfully retargeted by a specific
operator and what the mechanism the stereoscopic perception
is generated during the retargeting. Thus, it is practical and
necessary to evaluate the performances of different retargeting
attributes objectively.

Conventional 2D image retargeting algorithms, such as man-
ual cropping (CR), seam carving (SC) [2] and non-homogeneous
warping (WARP) [3], aim to adjust image size while minimiz-
ing the geometric distortion and content loss in those visually
important regions. However, different methods will demonstrate
dissimilar results even for the same input. To address the issue
of retargeting evaluation, 2D image retargeting quality assess-
ment (IRQA) methods, such as bi-directional similarity (BDS)
[4], SIFT-flow [5], earth mover’s distance (EMD) [6] and as-
pect ratio similarity (ARS) [7], establish the inter-image corre-
spondence to calculate the dissimilarity between the matched
pixels/regions. For stereoscopic images, applying the same re-
targeting operation on the left and right images is often prob-
lematic, because the depth ranges should be also adjusted to
maximize the visual experience (mainly from visual comfort
and depth perception). Therefore, the perceptual quality of 3D
retargeted images not only depends on image quality, but also
the 3D perception properties [8], [9]. In 3D perception, depth
information may help to better understand images while com-
fortable perception can improve the viewing experience. The ex-
isting SIR methods impose depth-preserving constraint [10] or
visual comfort constraint [11] in optimization for generating the
stereoscopic retargeted images, but these constraints are difficult
to qualify by standard objective models. Therefore, stereoscopic
image retargeting quality assessment (SIRQA) is a challenging
task.

In recent years, many specific SIR methods have been de-
veloped. For most of these methods, subjective comparison is
conducted to demonstrate the superiority of their retargeting re-
sults [10]–[13]. However, subjective comparison is expensive,
time-consuming and difficult to be integrated into real-time op-
timization systems. To meet the requirement for high-quality
image generation, the guideline of SIR process is still at an
early stage of success, which makes quality evaluation of 3D
retargeted images be a fundamental task. Therefore, objective
SIRQA metric should be performed and used to maximize the
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perceptual quality during the retargeting process, which has di-
rect application in optimizing the retargeting operation with the
supervision of quality.

In this paper, we carry out an in-depth investigation on qual-
ity assessment issue for SIR from both subjective and objective
perspectives. For this purpose, we build a benchmark SIRQA
database (NBU-SIRQA) to study the perceptual quality for SIR1.
We select eight representative SIR methods and two retargeting
scales to generate 720 stereoscopic retargeted images. To our
knowledge, there is no large-scale SIRQA database on qual-
ity assessment for SIR. Based upon the database, we propose
an objective SIRQA metric by measuring grid deformation and
information loss (GDIL). Inspired by the work [14] which es-
tablishes a similarity transformation via rewarping to simulate
different types of retargeting operators, and the work [7] which
designs a unified framework of resampling grid generation to in-
terpret the image retargeting, and also referred to the definition
of 3D quality of experience (QoE) [12] as a combination of im-
age quality and 3D perceptual quality (e.g., depth sensation and
visual comfort), to simulate different types of SIR operators, the
metric in this paper to measure image retargeting quality and
3D perceptual quality lies in decomposing each SIR operator
into two complementary transformations: monocular retarget-
ing transformation (MRT) and viewpoint transformation (VPT).
We extract grid deformation and information loss features from
the transformations to evaluate the stereoscopic retargeted im-
age quality. Overall, the major contributions of our work are
summarized as follows:

1) For the subjective study of SIRQA, we build a new SIRQA
database named NBU-SIRQA, which includes 720 stereo-
scopic retargeted images generated from eight SIR opera-
tors on two retargeting scales. Subjective evaluation is im-
plemented to obtain the subjective opinion score of each
stereoscopic retargeted image.

2) We formulate each SIR operator into two independent
transformations (i.e., MRT and VPT) to derive the stereo-
scopic retargeting modifications. As a result, the process
to generate stereoscopic retargeted images using different
SIR methods can be simulated in a straightforward way.

3) We apply grid deformation and information loss as fea-
ture representations extracted from MRT and VPT. Based
upon the integrated features and the corresponding sub-
jective opinion scores, a quality predictor can be learned
to accurately predict the quality scores of stereoscopic re-
targeted images.

The rest of this paper is organized as follows. In Section II,
we summarize the existing 2D/3D image retargeting methods
and the previous works on IRQA and SIRQA. Section III intro-
duces the new database. Section IV presents the motivations and
feature representations of our GDIL metric. The experimental
results are shown and discussed in Section V, and finally con-
clusions are drawn in Section VI.

1The database and implementation of our metric are [Online]. Availa-
ble:https://pan.baidu.com/s/1uBVzAY-bXYyjVjBCItwhQA,https://github.
com/zhenqifu/SIRQA

II. RELATED WORK

A. 2D/3D Image Retargeting Methods

The existing 2D and 3D image retargeting techniques can be
broadly classified into two categories: discrete and continuous
approaches. For 2D image retargeting, CR, SC and shift-maps
(SM) [15] are representative discrete algorithms which adjust
image size by directly removing or inserting pixels in unim-
portant regions. In contrast, scaling (SCL), WARP, streaming
video (SV) [16], scale-and-stretch (SNS) [17] formulate contin-
uous solutions to preserve important image content. Particularly,
multi-operators (MULTIOP) [18] combines several retargeting
operators to iteratively adjust image size. For SIR, stereoscopic
cropping and stereoscopic seam carving are two popular dis-
crete algorithms. Wang et al. [13] adopted stereoscopic saliency
information to guide stereoscopic cropping. Basha et al. [19]
iteratively removed a pair of seams to adjust the aspect ratios of
stereoscopic images. Chen et al. [20] proposed a stereoscopic
seam carving algorithm based on stereoscopic gradient and
saliency. Other discrete SIR methods can be found in [21]–[24].
Continuous SIR methods are based on stereoscopic warping.
Chang et al. [11] presented a warping-based SIR framework by
optimizing the sparse pixel correspondences and disparity con-
sistency. Lee et al. [25] proposed a layer-based SIR method, in
which warping operator is implemented on each layer. Li et al.
[26] optimized stereoscopic warping energy functions preserv-
ing objects shapes and scene depth. Shao et al. [12] presented
a QoE-guided warping algorithm to promote visual experience
for stereoscopic retargeted images. Other continuous SIR algo-
rithms can be found in [27]–[29].

B. 2D Image Retargeting Database and Its Perceptual Quality

To comparatively study the quality of different retargeting
operators, Rubinstein et al. [30] constructed an IRQA database
named RetargetMe. The database selects 37 source images and
eight typical image retargeting methods to create 192 retargeted
images. Pair-wise subjective test is conducted between two re-
targeted images to record the subjective rank score. Ma et al.
[31] built a CUHK database for IRQA, which contains 171 re-
targeted images generated from 57 source images using three
different retargeting operators. The perceptual quality of each
retargeted image is subjectively rated on five quality scales, ob-
taining a mean opinion score (MOS) for each retargeted image.
Hsu et al. [32] constructed a NRID database, which includes 175
retargeted images generated from 35 original images using five
different retargeting methods. The subjective scores for NRID
database are also obtained via pair-wise comparisons.

Benefited from these publicly available IRQA databases,
many IRQA measurements have been proposed in recent years.
Fang et al. [33] devised a structural similarity based IRQA metric
(IR-SSIM) to evaluate how much structure information from the
source image is preserved in the retargeted image at each spatial
location. Hsu et al. [32] used scale-invariant feature transform
flow (SIFT-flow) fields to represent local variance as geometric
distortion, and computed saliency loss as content loss. Zhang
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et al. [7] calculated aspect ratio similarity (ARS) in local blocks
to elaborate geometric change. Liang et al. [34] predicted the
quality of different retargeted images by considering the fac-
tors of salient content, artifact, global structure, aesthetic and
symmetry. Jiang et al. [35] learned two over-complete dictio-
naries to evaluate the similarity of two images. Chen et al. [36]
proposed a bi-directional natural salient scene distortion model
for IRQA. Zhang et al. [37] improved the alignment algorithm
and proposed a three-level representation model. Other relevant
works can be found in [38]–[40].

C. 3D Image Retargeting Database and Its Perceptual Quality

As mentioned above, the existing SIR methods have advan-
tages and disadvantages in handling content and depth optimiza-
tion. For example, stereoscopic seam carving directly inserts
or removes a pair of seams, so that it can well preserve the
geometric consistency. However, high computational cost and
poor object shape preservation are two main shortcomings for
these types of methods. In contrast, stereoscopic warping dis-
tributes distortions on all spatial directions, which can better
utilize available homogeneous regions to absorb distortions, but
it may over-stretch or over-squeeze the salient objects. There-
fore, it is very necessary to design efficient objective metrics to
faithfully evaluate the quality of 3D retargeted images.

Currently, only few works are proposed for SIRQA. Liu et
al. [41] built a SIRQA database and presented a learning-based
objective SIRQA metric. The database contains 56 source im-
ages and 224 stereoscopic retargeted images produced by four
SIR methods, including cropping, scaling, seam carving and
warping. To assess the quality of 3D retargeted images, multi-
ple features from disparity excessiveness, depth similarity, pic-
ture completeness, local and global shape distortions are ex-
tracted to learn a predictor. Zhou et al. [42] proposed a SIRQA
database named SIRD, in which four stereoscopic image retar-
geting methods including cropping, seam carving, scaling and
multi-operator are used to create the retargeted images. The
database consists of 400 stereoscopic retargeted images and 100
source images. In addition, features from disparity range, dispar-
ity intensity distribution, boundary disparity, and image quality
are used to evaluate the quality of 3D retargeted images. Despite
of pioneering construction of these databases, the common lim-
itations of these databases and quality evaluation methods are
as follows: 1) Only few SIR methods are used to generate retar-
geted images, which may make the database cannot fully reflect
the quality degradation factors; 2) Simply using image quality
and stereoscopic perceptual quality for SIRQA may ignore the
retargeting modifications between the original and stereoscopic
retargeted images; 3) The performance of existing SIRQA met-
rics are not robust enough for real applications, thus, new SIRQA
metrics are needed.

III. NBU-SIRQA DATABASE

To investigate quality assessment of stereoscopic retargeted
images, we construct a new SIRQA database (NBU-SIRQA),
which includes 720 stereoscopic retargeted images generated

by eight typical SIR methods on two retargeting scales. Subjec-
tive quality evaluation of these stereoscopic retargeted images
is formulated to capture the human option scores. Our database
will be introduced in detail in the following parts.

A. Source Image

Since our framework is designed to evaluate the quality of
different stereoscopic retargeted images, it is expected that the
selected source images should have enough diversity in terms of
image contents and depths. To distinguish different image retar-
geting methods, we select a set of attributes that can reflect major
retargeting objectives (e.g., content preserving, shape preserv-
ing or artifacts preventing). The selected scenes include natural
scenery, foreground object, geometric structure, face and people,
and other indoor and outdoor scenes. Fig. 1 shows the selected
45 source images in the database. Also, in order to measure
depth attributes on different SIR methods, the source images se-
lected in the database have different disparity ranges to reflect
comfortable or uncomfortable visual perception. An example of
stereoscopic images with different disparity ranges is shown in
Fig. 2.

B. Retargeting Method

To measure the diversity of collected stereoscopic images in
the database, we select and employ eight typical SIR methods,
including monocular seam carving, scale and stretch operators,
stereoscopic cropping, stereoscopic scaling, stereoscopic seam
carving and stereoscopic warping operators. We apply these op-
erators to adjust the original image resolution on two retargeting
scales: 25% and 50% (i.e., shrinking the width to 75% and 50%
of the original width). The selected SIR methods are described
below.
� Monocular seam carving (MSC) [2]: left and right images

are resized via seam carving algorithm respectively.
� Monocular scale and stretch (MSNS) [17]: left and right

images are resized by scale and stretch (SNS) algorithm
respectively.

� Content persistent cropping (CPC) [13]: using stereoscopic
saliency information to calculate the position of the clip-
ping window and automatically cropping the image.

� Stereoscopic scaling (SSCL): simply scaling the original
image into the target size.

� Geometrically consistent stereoscopic seam carving (GC-
SSC) [19]: removing pixels that belong to the non-
informative regions in left and right images according to
the principle of geometric consistency.

� Visual attention guided seam carving (VASSC) [21]: ap-
plying binocular just noticeable difference (BJND) model
and visual attention mechanism to select seams, and seam
replacement is performed for the occluded regions to pre-
vent the geometry inconsistency.

� QoE-guided warping (QOE) [12]: taking object shape, vi-
sual comfort and depth sensation into account and solv-
ing the optimization model in 3D space. QOE attempts to
promote the visual experience for different stereoscopic
retargeted images.
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Fig. 1. The left images of 45 source stereoscopic images. The images demonstrate different resolutions, varying depth ranges and diverse contents. More detailed
information of the source images can be found in our database.

Fig. 2. Example of stereoscopic images with different disparity ranges. The mean absolute values of the disparity for (a), (b), (c), and (d) are 33.62, 44.02, 75.55
and 79.99 respectively. The mean top 5% absolute values of the disparity for (a), (b), (c), and (d) are 55.17, 89.09, 117.02, and 253.94, respectively.

� Single-layer warping (SLWAP) [11]: an objective energy
function is optimized, based on feature matching and dis-
parity consistency constraint. SLWAP can adapt depth to
the comfort zone while preserving the shapes of prominent
objects.

For the retargeting methods selected in the database, we have
the following considerations: 1) Similar to the existing SIRQA
databases [41], [42], four types of retargeting operators (e.g.,
cropping, scaling, seam carving and warping) are used to gen-
erate the retargeted images; 2) To well distinguish 2D and 3D
properties, two 2D retargeting methods (e.g., MSC and MSNS)
are included in database independently applied on the left and
right images; 3) The existing databases [41], [42] omit uncom-
fortable stereoscopic images with large disparity ranges, while

visual comfort is one of the three attributes in 3D QoE. There-
fore, two 3D methods (e.g., QOE and SLWAP) in optimizing
depth ranges are included in our database. The main attributes
of these methods are illustrated in Table I, where “

√
” denotes

the attribute is considered while “×” indicates the attribute is
not considered in the retargeting method. Since each method
has its strength or weakness in shape preserving, object preserv-
ing, depth perception, visual comfort and geometry consistency,
our database takes these attributes into account to comprehen-
sively represent 2D and 3D retargeting objectives. Since it is
difficult to evaluate each attribute independently in subjective
perception, especially, strong depth perception means lower vi-
sual comfort under uncomfortable viewing, we only evaluate
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TABLE I
MAIN ATTRIBUTES OF EIGHT SIR METHODS. (“

√
” DENOTES THE ATTRIBUTE IS CONSIDERED WHILE “×” DENOTES THE ATTRIBUTE IS NOT CONSIDERED IN THE

RETARGETING METHOD)

Fig. 3. Example of stereoscopic retargeted images generated by eight SIR algorithms. (a) Original image. (b) MSC. (c) MSNS. (d) CPC. (e) SSCL. (f) GCSSC.
(g) VASSC. (h) QOE. (i) SLWAP.

the overall QoE of each stereoscopic retargeted image. An ex-
ample of stereoscopic retargeted images generated by eight SIR
methods is shown in Fig. 3.

C. Subjective Testing

Refer to [31], we adopt a double-stimulus absolute category
rating (ACR) test methodology for the subjective testing, in
which the reference and the stereoscopic retargeted images are
simultaneously displayed on the screen. Subjective test envi-
ronment and condition are designed according to the recom-
mendations of ITU-R BT.500-11 and ITU-R 1438. A Samsung
UA65F9000 65-inch Ultra HD 3D-LED TV with 3D shutter
glasses was used for the testing. To avoid the possible contextual
and memory effects on subjective judgment, the stereoscopic

retargeted images which is created from a same source image
will be not displayed consecutively. The subjective ratings for
stereoscopic retargeted images were rated on a five-level scale:
5 (excellent), 4 (good), 3 (fair), 2 (poor), and 1 (bad). Thirty
graduate students (20 male and 10 female) participated in the
subjective testing.

D. Processing of Subjective Scores

After subjective testing, human option ratings of all 720
stereoscopic retargeted images from 30 subjects are obtained,
and the normalized z-scores are defined as [43]:

zm,n =
sm,n − μm

σm
(1)
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Fig. 4. The MOS distribution of NBU-SIRQA database.

where sm,n denotes the score assigned by subject m to the image
n, and μm and σm denotes the mean and standard deviation
calculated from all scores assigned by subject m. Then, after
removing the outlier subjects (within 95% confidence interval),
the normalized z-scores are converted to MOSs by the follow
mapping functions:

z′m,n =
100 (zm,n + 3)

6
(2)

MOSn =
1

K

∑
m

z′m,n (3)

where K is the number of subjects after subject rejection.

E. Analyses of the Subjective Scores

In Fig. 4, we demonstrate the histogram distribution of all
the MOS values in the NBU-SIRQA database. We can observe
that the MOS values span over a wide range of visual quality
(from excellent to bad) and have a good spread at different visual
levels. In addition, the distribution of MOS values indicates the
diversity of images in the constructed NBU-SIRQA database.
We further analyze the subjective scores from the perspective of
source image, retargeting method and retargeting scale to better
demonstrate the properties of the database.

Source Image: Since the essence of SIR is to preserve im-
portant shapes and contents while preventing artifacts, different
source images will have different retargeting effects considering
the texture/structure complexity. In addition, some SIR methods
ignore the details of disparity optimization, leading to unsatis-
factory retargeting results, especially when the source images
have large disparity ranges. We illustrate the influence of source
images with an example in Fig. 5. For the source image with
a mid-size salient object and simple background shown in the
first row, CPC can achieve better performance than QOE (with
larger MOS value), while for the source image with multiple dis-
persive objects shown in the second row, CPC may destroy the
completeness of the retargeted objects with unexpected content
loss. However, for the source image with large disparity range
shown in the last row, although CPC can well preserve the image
content and shape, it ignores the optimization of disparity range,
resulting in poor visual quality. Therefore, we collect the source
images with diverse attributes (content, shape and disparity) to
better demonstrate the influence of source images.

Fig. 5. Influence of the source image.

Fig. 6. The mean MOS values of different SIR methods.

Retargeting Method: The average MOS values of eight SIR
methods are shown in Fig. 6. We can make the following ob-
servations from the figure: 1) Since discrete methods directly
remove the pixels or blocks leading to noticeably jagged edges
and artifacts in objects, especially when the image resolution is
adjusted to 50% of the original width, the overall performance
of the discrete methods (e.g., MSC, GCSSC, VASSC) is lower
than the continuous methods; 2) Since the CPC creates a clip-
ping window based on significance information to adjust image
size, the overall performance of CPC is better than other three
discrete methods; 3) Among these methods, QOE and SLWAP
have the best retargeting results by considering visual comfort;
4) The continuous method MSNS resizes the left and right im-
ages respectively and its retargeting results are inferior to QOE
and SLWAP.

Retargeting Scale: In fact, it is difficult to preserve object
shape and important content on a large retargeting scale (i.e.,
large shrinking width for large scale). As illustrated in Fig. 6,
the average MOS value on 50% retargeting scale (shrinking the
width to 50% of the original width) is 39.47, and the average
MOS value on 25% retargeting scale (shrinking the width to 75%
of the original width) is 60.53. But for some source images, the
subjects are more sensitive to content loss than structure defor-
mation. Therefore, it is challenging and meaningful to evaluate
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Fig. 7. MTR and VPT transformations.

the retargeted images on different retargeting scales to compre-
hensively investigate the performances of different retargeting
methods.

IV. OBJECTIVE QUALITY METRIC FOR 3D IMAGE

RETARGETING

Based upon the database, we propose an objective SIRQA
metric via measuring grid deformation and information loss
(GDIL). Differentiating with other methods that simply take im-
age quality and stereoscopic perceptual quality into account, the
novelty of our approach is to decompose each SIR operator into
two transformations to reveal the artificial stereoscopic retar-
geting modifications. Next, we will introduce our approach in
detail.

A. Motivation

Differentiating with SIR methods that the stereoscopic retar-
geted image is the algorithm output. In SIRQA, both the original
and retargeted images are known in advance but the stereoscopic
retargeting rule is unknown. As an inverse problem, it is impor-
tant to find the artificial retargeting modifications and dig the
relationship between the original and retargeted images. Most
recently proposed IRQA methods attempt to find such mod-
ifications by using robust SIFT-flow [7], [33], [34], [36], [37],
[44]. However, for SIRQA, the relationship between the original
and retargeted images is more complex than 2D case due to the
non-intuitive binocular visual characteristics, such as binocular
fusion and binocular rivalry.

As mentioned earlier, inspired by the works [14] and [7] which
employ a similarity transformation and a framework of resam-
pling grid generation to simulate different types of retargeting
operators respectively, and also referred to the definition of 3D
quality of experience (QoE) [12], in this paper, we decompose
each SIR operator into two transformations: monocular retarget-
ing transformation (MRT) and viewpoint transformation (VPT)
to simulate different types of SIR operators and reveal the artifi-
cial retargeting modifications. The MRT and VRT is performed
on both left and right images (pattern left and pattern right),
as shown in Fig. 7. MRT transformation transforms the original
left/right image to its target size based on an estimated SIFT-flow
map. Similar with MRT, VPT is applied to reconstruct the re-
targeted left and right images to clarify the 3D attributes via the
disparity map [45]. As discussed in [7] and [30], approximately
estimating retargeting modification is helpful to find the corre-
sponding quality degradations between the original and stereo-
scopic retargeted images. The designed MRT is to evaluate the
image quality of the retargeted left and right images while VPT

is to assess the 3D perceptual quality. As a result, by decom-
posing each SIR operator into two transformations, quantitative
measurement of stereoscopic retargeting modifications will be
more straightforward. The framework of GDIL is exhibited in
Fig. 8.

B. MRT Feature Representation

MRT aims to resize the original monocular image (left or
right) to a target aspect ratio. Thus, feature representation on
MRT is also related to IRQA methods. In this paper, we use
grid’s aspect ratio similarity measurement to capture the 2D
retargeting distortions.

First of all, the visual importance map is obtained by inte-
grating a graph based visual saliency (GBVS) map [46] and a
disparity map [45], calculated as:

V = η1 · N (SI)+η2 · N (SD) (4)

where SI is the GBVS map of a monocular image and SD is the
disparity map, N(·) is the normalization function, η1 and η2 are
the weights for the GBVS map and disparity map respectively.
In our experiment, we set η1 = η2 = 0.5.

After obtaining the visual importance map, pixel-to-pixel cor-
respondence between the retargeted and original images is es-
tablished by SIFT-flow algorithm. Then, the retargeted grids can
be obtained by mapping all pixels within the original grids to
the retargeted image according to the SIFT-flow map (a set of
16×16 grids are extracted in original image). Similar to [7], the
gird deformation is estimated by using all pixels within a grid.
We calculate the maximum width and height of each retargeted
grid to measure the grid deformation:

f1 =
∑
i

∑
j

vi,j · 2 ·
[
wi,j · hi,j + C

w2
i,j + h2

i,j + C

]

·
[
e−α·(0.5·(wi,j+hi,j)−1)2

]
(5)

where vi,j represents the average visual importance value for the
grid (i, j), wi,j and hi,j denote the maximum width and height
of a grid respectively, C is a small positive constant to avoid
the division by zero, and α is a parameter to balance content
loss and shape distortion and. In the experiment, we set C =
10-6 and α = 0.3. Obviously, larger value of f1 indicates better
image structure preservation. However, when the original image
structure is seriously distorted, the measured maximal width and
height of a retargeted grid may be identical with the original
grid, as shown by the example in Fig. 9. In such situation, f1
cannot effectively measure the deformation for the retargeted
grids. For this purpose, another feature measuring information
loss is extracted to promote the accuracy of grid deformation
measurement, defined as:

f2 =
∑
i

∑
j

vi,j · s̃i,j/si,j (6)

where s̃i,j and si,j denote the numbers of pixels in the matched
grids of retargeted and original images respectively.
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Fig. 8. The framework of the proposed GDIL method. The MRT (orange solid path) aims to evaluate the quality of left and right images. The VPT (purple
dotted path) aims to evaluate the stereoscopic perceptual quality. GDIL metric (black solid path) obtains the objective quality score by fusing individual quality
components.

Fig. 9. An example of MRT gird deformation, in which the grid is seriously
distorted but the maximal width and height are not changed.

C. VPT Feature Representation

As discussed, visual comfort and depth sensation are two cru-
cial factors influencing 3D perception in SIR. In this subsection,
we propose two VPT driven stereoscopic perceptual properties
measurements for SIRQA. These two measurements are named
as VPT grid deformation and VPT information loss, similar to
the feature representations on MRT. First, disparity map [45] is
used to establish the relationship between the retargeted left and
right images. Then, a set of grids (e.g., 16×16) in the retargeted
left image and the corresponding grids in retargeted right image
are extracted based on the disparity map. The grid deformation is
calculated based on the average width and height of each grid to
measure the possible changes of disparity gradient in affecting
visual discomfort [47]–[49]. Instead of using all pixels within
a grid, only four vertices of the grid are employed to estimate
the grid deformation on VPT, since the fluctuation of disparity
is relatively stable, compared with the object deformation on

Fig. 10. An example of VPT grid deformation. Four grid vertices are used to
estimate the grid deformation.

MRT. The VPT grid deformation is defined as:

f3 =
1

M ·N
∑
i

∑
j

2 ·
[
w̄i,j · h̄i,j + C

w̄2
i,j + h̄2

i,j + C

]
(7)

w̄i,j =
1

2
· [(pxi+1,j − pxi,j

)
+
(
pxi+1,j+1 − pxi,j+1

)]
(8)

h̄i,j =
1

2
· [(pyi,j+1 − pyi,j

)
+
(
pyi+1.j+1 − pyi+1,j

)]
(9)

where M and N are the number of girds in the horizontal and
vertical directions, w̄i,j and h̄i,j denote the average width and
height of the grid (i, j), px and py denote the x-coordinate and
y-coordinate of a grid vertex P, respectively. An example of VPT
grid deformation is illustrated in Fig. 10.

Since depth sensation is perceived from binocular disparity
and monocular occlusion simultaneously, information loss is
computed according to the area of occlusion and the area outside
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the field-of-view (Out-FOV) and occlusion. Refer to [19], we
define the occluded and Out-FOV regions as follows.

Let (l, k1) and (l, k2) be two pixels in left image, and D is the
disparity map. It follows that the pixel (l, k2) occludes (l, k1):

k1 +D (l, k1) = k2 +D (l, k2) ∃k1 < k2 (10)

If a pixel (l, k) belongs to Out-FOV region, it needs to meet
the following condition:

k +D (l, k) < 1ork +D (l, k) > kmax (11)

where kmax denotes the maximum width of retargeted image.
After deriving the occluded and Out-FOV regions, we calculate
information loss on VPT by:

f4 = (s1 + s2) / (W ·H) (12)

where W and H denote the width and height of the retargeted
image respectively, s1 denote the area of Out-FOV, s2 denote the
area of occlusion.

D. Quality Evaluation

As illustrated in Fig. 7 and shown by the specific examples of
MRT and VPT features in Fig. 8, the process for feature repre-
sentations on MRT and VRT is performed on both left and right
images (defined as pattern left and pattern right). To accurately
capture the quality of each stereoscopic retargeted image, we
opt to measure the similarity via combining these two aspects.
By this way, we can acquire an eight-dimensional quality vector
for each stereoscopic retargeted image:

f =
{
fL
1 , f

R
1 , fL

2 , f
R
2 , fL

3 , f
R
3 , fL

4 , f
R
4

}
(13)

where the superscript L (R) denotes the feature is obtained from
pattern left (right). With the estimated quality vector, we build
a pre-trained quality predictor. In our implementation, we adopt
random forest to train the quality predictor. Of course, other
machine learning techniques can be employed here. We conduct
experiments to analyze the impact of different pooling schemes,
and the experiment results will be presented in the next section.

V. EXPERIMENTAL RESULTS AND ANALYSES

In this section, we quantify the performance of objective mod-
els on the proposed NBU-SIRQA database using three evalu-
ation criteria: Pearson Linear Correlation Coefficient (PLCC),
Spearman Rank order Correlation Coefficient (SRCC), and Root
Mean Square Error (RMSE). SRCC is used to evaluate predic-
tion monotonicity, while PLCC and RMSE are applied to assess
prediction accuracy. In our experiment, PLCC and RMSE are
calculated after a nonlinear mapping between the subjective and
objective scores [50]:

f (x) = β1

(
1

2
− 1

1 + eβ2(x−β3)

)
+ β4x+ β5 (14)

whereβ1,β2,β3,β4 andβ5 are parameters determined by fitting
between the subjective and objective scores.

Before training the quality predictor, it is necessary to con-
struct a training and testing set. In the experiment, we randomly
divide the whole dataset into two groups: 80% for training and

TABLE II
BASIC INFORMATION OF THE EXPERIMENTAL DATABASE

20% for testing. There will be no overlap between testing and
training subsets. The average values of PLCC, SRCC and RMSE
after 1000 iterations are reported as the final performance scores.
The basic information of the experimental database is summa-
rized in Table II.

A. Performance Comparisons with Other Methods

We compare our GDIL model with five state-of-the-art IRQA
methods, including SIFT-flow [5], BDS [4], EMD [6], hand-craft
and deep learned features (HCDL) [44] and ARS [7], and two
recent SIRQA methods (Liu’s method [41] and Zhou’s method
[42])2 . For SIFT-flow, BDS, EMD, HCDL and ARS designed
for 2D images, the quality of each view is separately estimated
and weighted to generate a score. Table III gives the compar-
isons of PLCC, SRCC and RMSE scores between each compet-
ing measurement and GDIL metric on three datasets, including
all stereoscopic images on 50% retargeting scale, 25% retarget-
ing scales and all scales, respectively. From the table, we have
the following observations: 1) Three traditional IRQA metrics
(SIFT-flow, BDS and EMD) have poor consistency with the sub-
jective rating, especially on single retargeting scale, due to ig-
noring important contents and the 3D perception; 2) Compared
with HCDL and ARS methods which usually have high perfor-
mance on 2D IRQA databases, the performance of our GDIL
metric is significantly promoted by considering the 3D percep-
tual properties; 3) Compared with two 3D metrics (Liu’s method
and Zhou’s method), our GDIL can achieve better performance.
The reason is that MRT and VPT are effective to detect 2D and
3D retargeting semantics by revealing the artificial stereoscopic
retargeting modifications. Overall, the evaluation results on all
data are better than the results on 50% retargeting scale and
25% retargeting scale, and our GDIL measurement can achieve
great performance promotion on predicting the quality of 3D
retargeted images.

In addition, we conduct one-sided t-test at a significance level
of 0.01 using 1000 SRCC values of all SIRQA metric pairs to
demonstrate the statistical significance of the reported perfor-
mance gains. The statistical test can be referred to [51]. The
results of t-test are illustrated in Fig. 11. A value of “1”, “0”,
or “-1” indicates that the metric in the row is statistical “bet-
ter”, “worse”, or “indistinguishable” compared with the column

2Since these two measurements are not publicly available, the evaluation
results are computed by our approximate implementations.
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TABLE III
PERFORMANCE OF DIFFERENT METHODS ON NBU-SIRQA DATABASE

TABLE IV
PERFORMANCE OF EACH QUALITY COMPONENT

Fig. 11. Results of one-sided t-test conducted by using the SRCC scores of
competing SIRQA models. A value of “1” indicates that the row model is statis-
tically better than the column model, a value of “−1” indicates that the column
model is statistically better, while a value of “0” indicates that the two models
are statistically similar in performance.

mode respectively. From the result, we can observe that the pro-
posed method is statistically better than all other metrics.

B. Validity of Each Quality Component

In this subsection, we conduct experiments to investigate the
contribution of different quality components (features). First,
we compare the performance of individual quality component.
Comparison results are shown in Table IV, in which PLCC,
SRCC and RMSE are directly computed between the individual
quality scores and the MOSs. From the table, we have the fol-
lowing observations: 1) Among these measurements, grid de-
formation features on MRT (fL

1 and fR
1 ) have the great im-

pact on the overall performance; 2) Independently applying
the quality components cannot obtain the satisfactory results,

especially for the quality components fL
3 , fR

3 , fL
4 and fR

4 , be-
cause each measurement is complementary in characterizing the
quality degradations; 3) As expected, the performances on left
and right patterns have some differences, because image con-
tents, SIFT-flow map and disparity map of these two patterns
are not exactly the same.

Furthermore, we investigate the evaluation results using dif-
ferent feature combinations, as shown in Table V. We can ob-
serve that the results of #1, #2 and #3 are similar and all better
than #4, which indicates that grid deformation features on MRT
(fL

1 andfR
1 ) have the most significant contributions to the overall

performance, in line with the result in Table IV. Only consid-
ering the left or right features, the results of #5 and #6 are very
similar, but all do not exceed #9.

In addition, since we combine MRT (fL
1 , fR

1 , fL
2 , fR

2 ) and
VPT (fL

3 , fR
3 , fL

4 , fR
4 ) features to evaluate the overall quality,

the impact of two components is further analyzed. As shown
in Table V, MRT component (#7) has a greater influence on
the overall performance than VPT component (#8). The reason
may be that, for most of source images selected in the database,
image quality degradation induced by grid deformation and in-
formation loss is the primary factor under comfortable visual
perception, while for those uncomfortable stereoscopic images,
VPT (#8) must be considered to capture 3D perception qual-
ity and compensate the limitations of MRT. Overall, aggregated
MRT and VPT results in the best performance.

C. Influence of Different Quality Pooling Methods

As discussed before, the final quality evaluation results of
the proposed approach are highly dependent on the used qual-
ity pooling method. In this subsection, we conduct experiments
to analyze the influence of different pooling schemes. We use
six different pooling methods to fuse eight individual qual-
ity components, including linear regression, logistic regression,
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TABLE V
PERFORMANCE OF DIFFERENT FEATURE COMBINATIONS

TABLE VI
PERFORMANCE COMPARISON OF DIFFERENT QUALITY POOLING METHODS

TABLE VII
INFLUENCE OF DIFFERENT RETARGETING METHODS

Support Vector Regression (SVR) with linear kernel (L-SVR),
SVR with RBF kernel (RBF-SVR), SVR with polynomial kernel
(Poly-SVR) and random forest. The same train-test process is
used for the experiments. As observed from Table VI, non-linear
models always perform better than the linear ones, because linear
pooling assumes the contribution of each component on the over-
all quality is independent, but it is not always the fact if taking the
interactions between each quality components into account. The
best two results are obtained by using Poly-SVR and random for-
est. Compared with Poly-SVR, the used random forest strategy
may not be the best choice for low-complexity evaluation as it
needs large-scale trees in decision (the tree number is set to 50 in
our experiments). Therefore, SVR with specific kernels or other
quality pooling schemes can be selected by comprehensively
taking accuracy, monotonicity and complexity into account.

D. Influence of Different Retargeting Methods and Scales

To investigate the influence of different SIR methods, we
classify the whole database into eight groups (i.e., generated
by the same SIR method): Group-1 (MSC), Group-2 (MSNS),
Group-3 (CPC), Group-4 (SSCL), Group-5 (GCSSC), Group-6
(VACCS), Group-7 (QOE) and Group-8 (SLWAP). We apply
leave-one-out cross-validation (LOOCV) on the database, i.e.,
seven groups for training and the rest one group for testing. Ex-
perimental results are shown in Table VII. From the table, we
can make the following observations:

1) Our GDIL has low evaluation results on Group-1 and
Group-3 (MSC and CPC), because the retargeted images
obtained by the two methods are quite distinct from other
methods (e.g., MSC always leads to binocular asymmetry
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TABLE VIII
THE PREDICTED QUALITY VALUES FOR RETARGETED IMAGES IN FIG. 13

Fig. 12. Scatter plots of predicted quality scores against the subjective scores
(MOS) on Group-6.

and geometric distortion, while CPC directly extracts im-
portant content using clipping window with information
loss). Our GDIL has relatively high evaluation results on
Group-4 (SSCL), because the squeezed distortion is nor-
mal in other retargeting methods. It also shows that the
selected training samples should contain enough informa-
tion for discriminating the images with different qualities.

2) Compared the results on two independent retargeting
scales, the performance for a specific retargeting method
on large scale is lower than the performance on small scale,
due to the lower quality by removing more information,
which also denotes retargeting scale is another factor af-
fecting the ability of GDIL.

3) It should be recognized that in the view of the small num-
ber of samples and the very narrow diversity of quality
ranges for each group on a single retargeting scale, it is im-
possible to achieve much high accuracy for quality predic-
tion, while the aggregated data from all retargeting scales
can achieve a relatively good consistency with subjective
perception. The results from ARS metric (without train-
ing) and the scatter plots in Fig. 12 also clearly demon-
strated the phenomenon.

E. Application for Selecting the Best Retargeting Results

The most direct application for our metric is to guide the
selection of optimal retargeting operator performed on the

stereoscopic images with the best perceptual quality, denoted
as:

Γ̂ = argmax
Γ

GDIL
(
Γ(IL, IR)

)
(15)

where IL and IR are input left and right images, and Γ(·) indi-
cates a specific SIR operator.

Fig. 13 and Table VIII provide an example to show the im-
pact of different methods on selecting the best retargeting results.
As shown in Fig. 13, the selected source image in (a) and (d)
are visually comfortable, while the source image in (g) is visu-
ally uncomfortable (with large depth range beyond comfortable
viewing zone). Each source image is retargeted using two SIR
methods randomly selected from the eight SIR methods. We use
ARS [7], Liu’s method [41], and our GDIL metric to measure
the quality of the stereoscopic retargeted images. Experimental
results are reported in Table VIII. It is evident that our metric
can obtain the closest results with the ground-truth subjective
scores for almost all images. For ARS measurement, since it ig-
nores the 3D perception properties, it is incapable to assess the
quality of images, especially on (h). For Liu’s method, it cannot
accurately measure the object deformation and 3D perception
properties for most of the stereoscopic retargeted images. Since
our model measures grid deformation and information loss based
on MRT and VRT, the adaptability to different SIR methods is
obviously superior to others.

F. Discussions

In this paper, we decompose each SIR operator into two
transformations, and use grid deformation and information loss
as feature representations for SIRQA. Although the proposed
model demonstrates its high performance compared with other
state-of-the-art methods, it still has the following limitations: 1)
Feature representations on MRT and VPT are highly dependent
on the accuracy of the SIFT-flow and disparity estimation algo-
rithms. However, the existing pixel-wise matching algorithms
have the limitation in capturing structures, which may lead to
incorrect correspondences; 2) In our method, the importance
map is computed by directly combining GBVS map and dis-
parity map. The influence of different visual importance maps
should be further explored.
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Fig. 13. Original images and corresponding retargeted images. (a), (d) and (g) are original images, (b), (c), (e), (f), (h), (i) are the retargeted images.

VI. CONCLUSION

In this paper, we propose a quality assessment model for
stereoscopic image retargeting (SIR) based on grid deformation
and information loss (GDIL). For assessment purpose, we con-
struct a new stereoscopic image retargeting quality assessment
database (NBU-SIRQA), which contains 45 original images and
720 stereoscopic retargeted images. The stereoscopic retargeted
images are generated from eight SIR methods on two retargeting
scales. By decomposing SIR operators into monocular retarget-
ing transformation (MRT) and viewpoint transformation (VPT),
grid deformation and information loss features are extracted to
predict the quality of stereoscopic retargeted images. The per-
formance of our metric is extensively verified by the elaborately
designed experiments. In the future work, we will focus on dig-
ging deep features for quality representation and concentrate
on accurate quality pooling. In addition, we plan to design spe-
cific SIR algorithms in accordance with the stereoscopic image
retargeting quality assessment methods.
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