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Abstract—Stereoscopic Image Retargeting (SIR) aims to adapt 
stereoscopic images and videos to 3D display devices with various 
aspect ratios by emphasizing the important content while 
retaining surrounding context with minimal visual distortion. To 
address the issue of SIR evaluation, this paper presents a new 
objective quality assessment method for retargeted stereopairs by 
combining image quality and depth perception measures. 
Specifically, the image quality measure is conducted between the 
source and retargeted intermediate views generated by the view 
synthesis method to characterize the geometric distortion and 
content loss of the retargeted stereopair, while several 
depth-aware features are extracted to measure the visual 
comfort/discomfort and depth sensation when human views a 3D 
scene. Then, the extracted features are integrated into an overall 
perceptual quality prediction. Experiment results on NBU SIRQA 
and SIRD databases verify the superiority of our method.

Index Terms—Quality assessment; Stereoscopic image 
retargeting; Superpixel-based method; Depth perception.

I. INTRODUCTION

ITH the rapid development of 3D display devices, 
various 3D displays can be used for stereoscopic image 

visualization, ranging from high-resolution cinema screens to 
low-resolution mobile devices. For optimal display or use in 
different applications, a variety of Stereoscopic Image 
Retargeting (SIR) techniques [1-4] have been developed to 
adapt stereoscopic images/videos to screens with various 
aspect ratios and resolutions. However, it is still challenging to
generate a perfect retargeted stereopair for arbitrary scenes 
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without producing any noticeable artifacts, such as shape 
twisting, visually important content loss and visual discomfort. 
Therefore, an effective stereoscopic image retargeting quality 
assessment (SIRQA) metric is urgently needed for promoting 
SIR techniques.

In recent years, extensive researches [5-8] on image 
retargeting quality assessment (IRQA) for 2D retargeted 
images indicate that geometric distortion and content loss are 
two major factors leading to quality degradation of retargeted 
images, and the existing 2D IRQA metrics [9-11] explore the 
quality-aware features to characterize the two types of 
distortion. Among these metrics, the grid-based methods 
[12-14] have been demonstrated to be relatively effective in 
measuring the geometric distortion of retargeted images. 

By contrast with 2D retargeted images, it is a more 
challenging issue to evaluate the perceptual quality of 
retargeted stereopairs. So far, only a few works have been 
proposed for SIRQA [15-17], especially lack of large-scale 
databases for SIRQA purpose. Among these works, Liu et al. 
[15] combined five features, including picture completeness, 
local distortion, global distortion, depth similarity and disparity 
excessiveness to predict the quality of retargeted stereopairs. 
Zhou et al. [16] proposed a visual comfort assessment metric 
for SIR by estimating the disparity range, disparity intensity 
distribution, boundary disparity as well as image quality. Fu et 
al. [17] evaluated the perceptual quality of retargeted 
stereopairs by introducing monocular image retargeting 
transformation and viewpoint transformation to reveal the 
artificial retargeting modifications. Although the 
abovementioned metrics have positive effects on 2D IRQA or 
SIRQA, they still have the following limitations: 1) These 
SIRQA metrics performed feature extraction on left and right 
views separately without utilizing the disparity information, 
and then combined the extracted features to represent the 3D 
image quality. However, studies on stereoscopic images [18] 
provide the evidence that the quality perception of stereoscopic 
images is a more complex process, which cannot be expressed 
as a simple combination of monocular features. 2) Most 
grid-based methods adopted uniform grids to represent the 
deformation of retargeted images without considering the 
structure characteristic of the image. Although the non-uniform 
grid, e.g., superpixel, was applied in [19], which measured the 
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content loss of retargeted images by utilizing the statistic 
information of the superpixel, the shape modification of the 
superpixel was not involved. To overcome the limitations and 
further explore more effective features for SIRQA, we propose 
a new quality assessment method for stereoscopic image 
retargeting by performing image quality measure on the
generated intermediate view and depth perception measure 
from two aspects (i.e., visual comfort/discomfort and depth 
sensation). In summary, the main novelties of the proposed 
method are three-folds:

1) We generate an intermediate view for quality assessment 
of retargeted stereopair based on the experimental evidence that 
stereoscopic quality assessment on the intermediate view yields 
higher correlations with human subjective judgments than that 
on the monocular views separately [18].

2) We adopt superpixel-based method instead of the uniform 
grid-based method to measure the geometric distortion of the 
retargeted stereopair based on the fact that the shape of the 
superpixel can effectively represent the structure characteristic 
of the image.

3) Inspired by the visual physiology evidence that HVS 
perception tends to be more stable when monocular regions are 
more visually similar to the binocular background [20], we 
develop a new statistical similarity to measure the perceptual 
stability of the generated retargeted stereopair. 

The rest of this paper is organized as follows. Section II 
gives a brief review of related works and presents the 
motivation of this work. Section III details the proposed 
method. The experimental results on NBU SIRQA and SIRD 
databases are presented in Section IV. Finally, the conclusions 
are derived in Section V.

II. RELATED WORK AND MOTIVATION

A. Image Retargeting Operators
The image retargeting techniques can be roughly divided 

into two categories, i.e., discrete approaches and continuous 
approaches. Seam carving [21] is a typical discrete approach, 
which resizes an image by removing or inserting pixels (seams) 
in low-importance regions. However, the jagged edges and
content loss may appear in the visually important objects, 
which is the common weakness of the discrete approaches. In 
contrast, the performance of continuous approaches relies on 
the designed energy functions, such as warping [22], which 
adjusts the image resolution by redistributing density without 
discarding image contents, but the geometric distortion may 
degrade the visual quality of retargeted images created by 
continuous approaches.

For stereoscopic image retargeting, besides object and shape 
preservation, depth perception is another important factor 
affecting the performance of SIR approaches. For instance, 
Chen et al. [23] combined seam carving with depth-aware 
saliency for SIR. Shao et al. [24] incorporated stereoscopic 
visual attention and binocular just-noticeable difference models 
for the energy optimization of SIR. Lin et al. [25] utilized the 

object correspondences between the left and right views to 
implement the object-coherence warping. Chang et al. [2]
adapted image depth to the comfort zone while preserving the 
shapes of visually important objects. Shao et al. [4] developed a 
QoE-guided warping method by jointly taking the perception
factors into account, including image quality, depth perception 
and visual comfort.

B. Quality Assessment for 2D Image Retargeting
Since source images and retargeted images do not have the 

same resolution, the traditional full reference IQA metrics are 
not suitable for evaluating the quality of retargeted images. In 
recent years, numerous works [9-13] have been done to
develop effective IQA metrics for 2D image retargeting. To 
overcome the resolution gap between the source and retargeted 
images, the commonly-adopted preprocessing method is to 
utilize the dense correspondence to attain the alignment 
between the source and retargeted images, followed by the 
specific feature extraction and quality prediction operations. 
For instance, Fang et al. [9] designed an IR-SSIM metric which 
extended SSIM to IRQA by measuring the local quality 
between the matched patches of source and retargeted images. 
Unlike the traditional distortion types such as blur, 
compression artifacts and white noise, geometric distortion and 
content loss are two major factors leading to quality 
degradation of retargeted images. Hsu et al. [10] designed an 
IRQA metric by measuring the geometric distortion based on 
the local variance of SIFT-flow vector and estimating the 
content loss based on the saliency map. Liang et al. [11] 
evaluated the quality of retargeted images by jointly 
considering salient region, artifact, global structure, aesthetic 
and symmetry. Zhang et al. [12] proposed an aspect ratio 
similarity (ARS) metric for image retargeting by exploiting the 
local block changes to evaluate the visual quality of retargeted 
images. Karimi et al. [13] combined shape features, area 
features and aspect ratio features to estimate the geometric 
distortion and content loss of retargeted images. Shao et al. [21]
[26] presented a transform-aware similarity measurement 
metric for IRQA to estimate geometric distortion and content 
loss of retargeted images via bidirectional rewarping. Li et al. 
[19] proposed a quality evaluation model for image retargeting 
by extracting instance-level semantic features including shape 
twisting, size similarity, content loss and location movement. 
Although these metrics have delivered moderate performance 
in evaluating the quality of retargeted images, there is still large 
room for improvement in effectively and accurately measuring
geometric distortion and content loss of retargeted images.

C. Quality Assessment of Stereoscopic Images
Different from the perceptual quality of independent 2D 

images in a stereopair, the perceptual quality of the stereopair is 
a comprehensive result of multiple factors, such as image 
quality, depth quality and visual comfort [27]. The existing 3D 
IQA can be roughly divided into two categories based on 
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whether the 3D visual perceptual property is considered [28]. 
The first category [29] directly applied 2D IQA algorithms on 
the left and right views of the stereopair separately, and then 
combined the two scores into an overall quality. The second 
category takes various 3D perceptual properties into account, 
such as stereopsis, binocular suppression and binocular fusion. 
Lee et al. [30] presented a 3D Perception-based Stereo image 
quality pooling (3DPS) model, which divided the stereoscopic 
image into binocular and monocular regions based on the 
availability of binocular depth perception in the regions, and 
evaluated the quality separately. Maalouf et al. [31] performed 
3D IQA by calculating the sensitivity coefficients of the 
cyclopean views and the coherence between the disparity maps 
of the reference and distorted stereopairs. Chen et al. [28]
utilized the disparity information and Gabor filter response to 
construct a cyclopean view for the stereopair, and applied full 
reference 2D IQA models on the reference and test cyclopean 
views to predict the 3D quality scores. Shao et al. [32] learned 
binocular receptive field properties to simulate simple and
complex cells in the primary visual cortex, and characterized 
their impacts on quality estimation of stereoscopic images. In 
addition, visual comfort/discomfort is another important factor 
in affecting the overall perceptual quality of stereopairs. Most
researches predicted visual comfort/discomfort scores based on 
statistical characteristics of excessive disparities, including 
mean of disparity and range of disparity [33], horizontal 
disparity and vertical disparity [34], zone of comfort and depth 
of focus (DoF) [35]. However, the existing 3D quality metrics 
evaluate the 3D image quality or visual comfort/discomfort 
separately, without fully taking both aspects into account.

D. Motivation of This Work
From the analyses of the above related works, we have the 

following summaries: 1) Content loss and geometric distortion 
are two major distortions of retargeted images, where the 
geometric distortion in the edge region and the content loss in 
the important region are more serious than other regions, as 

shown by an example in Fig. 1(b) associated with the purple
rectangle of Fig. 1(a) and the blue rectangle of Fig. 1(c) 
associated with the red rectangle of Fig. 1(a), respectively; 2) 
The grid-based methods are demonstrated to be effective in 
characterizing the geometric distortion of retargeted images 
[12-14]; 3) The 3D image quality method that considers 3D 
perceptual properties is more reasonable than other methods; 4) 
Most existing methods adopted disparity statistical 
characteristics to predict visual comfort/discomfort of 
stereoscopic images [33-35]; 5) The existing 3D perceptual 
quality metrics separately evaluate the 3D image quality or 
visual comfort/discomfort. Although these quality metrics 
deliver moderate performances in evaluating the quality of 2D 
retargeted images or stereoscopic images, we target at
proposing an effective quality metric for stereoscopic image 
retargeting motivated by the following considerations: 1) 
Different from the perception of 2D image in the stereopair, the
perception of stereoscopic vision is actually the interaction of 
left and right views, which can be approximatively modeled by 
the perception of the intermediate view generated from the 
stereopair (similar to the virtual cyclopean vision). As shown 
by an example in Fig. 1(d), the distortion in the green rectangle 
of the intermediate view is more serious than the distortion in 
the orange rectangle of the left view. However, the existing 
SIRQA metrics [15-17] separately computed the quality scores 
of the left and right views without considering the 3D visual 
perceptual property. Thus, we attempt to evaluate the 3D image 
quality of retargeted stereopairs by investigating the quality of 
the intermediate view instead of the left or right view. 2) The
grid-based methods use the uniform grids to measure the 
geometric distortion without considering the image structure, 
which may assign different textures on the same grid, as shown 
by an example in the orange rectangle of Fig. 2(a), where the 
background and foreground belong to the same grid. In this 
paper, we attempt to adopt the non-uniform grids (e.g., 
superpixel, as shown in Fig. 2(b)) as the bases for measuring 
the geometric distortion of retargeted stereopairs. 3) Besides 

(a) (b) (c) (d)
Fig. 1. Example of the generated intermediate view. The images in the first row are the left views of (a) the source stereopair and (b)-(d) the retargeted 

stereopairs generated by content persistent cropping [36], geometrically consistent stereo seam carving [1] and stereo scaling [17], respectively. The images in 
the second row are the intermediate views of the associated stereopairs.
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the statistical characteristics of disparities, we aim at exploring 
more effective features to predict visual comfort/discomfort of 
retargeted stereopairs based on the research of visual 
psychology, e.g., the perceptual conclusion drawn in [20] 
indicates that 3D perception on stereoscopic images tends to be 
more stable when monocular regions are more visually similar 
to the binocular background. To summarize the perception 
factors considered in the paper, the typical distortion types and 
evaluation cues in the retargeted stereopairs are listed in Table 
I.

(a) (b)

Fig. 2. Example of (a) uniform grids and (b) non-uniform grids.

TABLE I
TYPICAL ARTIFACTS IN THE RETARGETED STEREOPAIRS.
Evaluation cues Distortion type

Image quality

Edge distortion
General geometric distortion

Important content loss
General content loss

Depth perception quality
Visual discomfort

Lack of depth sensation

III. PROPOSED METHOD

In this paper, we propose a new SIRQA method for the
retargeted stereopairs based on image quality and depth quality 
measures. Fig. 3 shows the framework of the proposed method. 
First, the intermediate views for the source and retargeted 
stereopairs are generated from the respective left and right 
views. Then, the geometric-aware quality and content-aware 
quality are measured on the intermediate views to evaluate the 
geometric distortion and content loss induced by imperfect 
retargeting operators, respectively. Additionally, depth-aware 
quality measure is studied from two aspects, i.e., visual 
comfort/discomfort and depth sensation, to characterize the 3D 
perception quality of a retargeted stereopair. Finally, the 
extracted feature components are fused to obtain the overall 
quality score.

A. Image Quality Measure
1) Virtual view synthesis: As claimed in [18], stereoscopic 

image quality assessment aims to evaluate the quality of the true 
cyclopean view when a stereopair is stereoscopically presented.
However, it is difficult to simulate the true cyclopean view as it 
requires to consider the display geometry, the presumed fixation, 
vergence and accommodation. Thus, we attempt to generate an 
intermediate view close to the quality of the true cyclopean view.

Since the camera parameters of the benchmark SIRQA 
databases are unknown, an optical flow-based view synthesis 
method is developed to generate a virtual view with high 
quality from an input stereopair. Specifically, the bidirectional 
optical flows ˆ

LRF from the left view to right view and ˆ
RLF from 

the right view to left view are first estimated using the 
SIFT-flow algorithm [37]. With the bidirectional optical flows, 
we pre-warp the left view IL to the target location using the 
‘halfway’ strategy [38] based on the optical flow ˆ

LRF , denoted 

as forward warping, obtaining a pre-warped left view L̂V . 

Similarly, the pre-warped right view R̂V can be obtained based 

on the optical flow ˆ
RLF by backward warping. To compensate 

for parallax in the two pre-warped views before blending, we 
calculate a parallax correction based on the bidirectional optical 
flows LRF and RLF between the two views [39]. Let xL and xR be 
matched pixels in the pre-warped left and right views, 
respectively, the local flow displacements can be calculated as:

x x x x
LRF L R L LR LF                          (1)

x x x x
RLF R L R RL RF                           (2)

Then, the corrected pixel locations are written as:
ˆx̂ x xL L LR LF                                  (3)

ˆx̂ x 1 xR L RL RF                             (4)
Finally, the virtual view IV is synthesized using the linear 

blending as:
ˆ ˆx 1 x xV V L L R RI I I (5)

where the blending weight is set as a default value of 0.5 for
generating the intermediate view. The generated intermediate 
view is shown by an example in Fig. 1(a). It can be seen that our 
view synthesis method is able to generate the intermediate view 
with high quality. Unlike the cyclopean view generated by 
fusing the stereopair, the disparity map and energy responses 
simulating the binocular rivalry property [18], our intermediate 
view is synthesized to primarily reflect the geometric 
inconsistency between the left and right retargeted views 
induced by the imperfect stereoscopic image retargeting 
process.
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SIFT-flow matching

Source virtual view Retargeted virtual view
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Dual-triangular grid similarity

Modified aspect ratio similarity

Edge intensity difference

Edge orientation difference

Fig. 4. Framework of the geometric-aware quality measure.

2) Geometric-aware quality measure: As shown in Fig. 1(c) 
and (d), geometric distortion is one of the major factors leading 
to the quality degradation of the retargeted stereopairs. In order 
to effectively measure the geometric distortion, as illustrated in 
Fig. 4, four geometric-aware features, including 
Dual-Triangular Grid Similarity (DTGS), Modified Aspect 
Ratio Similarity (MARS), Edge Intensity Difference (EID) and 
Edge Orientation Difference (EOD) are extracted from the 
source and retargeted intermediate views.

In contrast to the existing metrics [12-14] that used the 
uniform grid-based method to estimate the geometric distortion, 
we employ the superpixel-based approach to establish the 
non-uniform grid distribution, which is more coincident with 
the perception of image structure. To be specific, we adopt the 
Simple Linear Iterative Clustering (SLIC) [40] to detect the 

superpixels of the source intermediate view, and the 
corresponding results of the retargeted intermediate view are 
obtained based on the optical flow between the source and 
retargeted intermediate views. For the extraction of DTGS, the 
rectangular coordinate with the center of a superpixel as origin 
is first set up for the superpixel. As shown in Fig. 5, 
let 1 1( , )x y , 2 2( , )x y , 3 3( , )x y and 4 4( , )x y be four 
intersection points of the axis and the boundary for 
the -th superpixel in the source intermediate view, and let 

1 1( , )x y , 2 2( , )x y , 3 3( , )x y and 4 4( , )x y be the matched 
intersection points for the corresponding superpixel in the 
retargeted intermediate view, where the first and second
triangles are obtained by dividing the quadrilateral along the 
ordinate axis, the similarity between the first (second) source 
triangle and the first (second) retargeted triangle is calculated 
as:

1 11 2
1 2 2

1 2

2
exp cos coss r

d d
g

d d C
         (6)

2 24 5
2 2 2

4 5

2
exp cos coss r

d d
g

d d C
        (7)
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View synthesis
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Fig. 3. Framework of the proposed method.
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Fig. 5. Dual-triangular grid in the superpixel.
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where = i i
i r sd d d (i =1,2,…, 5), 1

s ( 2
s ) and 1

r ( 2
r ) are the 

angles of the first (second) source triangle and the first (second)
retargeted triangle, respectively, is empirically set as 0.3 to 
balance the translation (scaling) and rotation distortions of a 
superpixel, and C is a small constant to avoid the division by 
zero. We set C = 10-6 in the experiment. Then, the DTGS is 
defined as:

1 1 2
1
2

f g g                   (8)

where denotes the average saliency value of 
the -th superpixel obtained by GBVS algorithm [41]. As 
revealed in our previous work [26], the vertex-based method 
and ARS are complementary to each other in detecting the 
change of grids induced by translation, scaling and rotation. 
Thus, we compute the MARS of the superpixel as a supplement 
to the DTGS:

2
2 2

2 exp 1w hg u
w h C

                      (9)

2f g                                (10)

where r sw w w , r sh h h , in which w and h ( { , }r s )
are the maximum width and height of the superpixel, 
respectively. In comparison to the homogeneous regions, 
distortions in the edges are more conspicuous to HVS. 
Therefore, the edge intensity and orientation differences
between the source and retargeted intermediate views are 
calculated to measure the degree of edge distortion [42]. 
Specifically, for an input grayscale I, the edge intensity map is 
defined as:

2
x yG G E

M                            (11)

-1 0 1
-2 0 2
-1 0 1

J                              (12)

where xG I J and T
yG I J are the horizontal and 

vertical gradients, respectively. and T denote the 
convolution and transpose operators, respectively. The edge 
map E is detected using the Canny operator [43]. The edge 
orientation map is computed as:

180
arctan y

x

G
O

G
                             (13)

Then, the EID and EOD between the source and retargeted 
intermediate views are calculated as:

10

3
1

M M
r s

i
f i iH H                             (14)

10

4
1

O O
r s

i
f i iH H                                (15)

where MH and OH ( { , }r s ) are the edge intensity and 
orientation histograms, respectively. The range of edge 
intensity or edge orientation is quantized into 10 equally 

spanned bins. As a result, the final geometric-aware feature 
component is represented as FGA = [f1, f2, f3, f4].

3) Content-aware quality measure: During the SIR process, 
image resolution of the source stereopair is adjusted to a target 
resolution by unavoidably discarding partial image contents. 
Thus, it is necessary to evaluate the information 
loss/preservation in the SIR results. In this paper, we estimate 
the information loss/preservation by calculating the statistical 
distance/similarity between the source and retargeted 
intermediate views from the global and local perspectives, 
respectively. Fig. 6 shows the framework of the content-aware 
quality measure. Let S be the normalized saliency map detected 
from the intermediate view using GBVS algorithm [41], the 
important content preservation feature can be calculated as:

,
1, , , 1, 2,...,

,
0, Others

kx y
S x y T k L

B x y        (16)

5 2 2

2
,s r

s r

A A
f A B

A A C
                          (17)

where k denotes the set of pixels in the k-th superpixel, L is the 

number of superpixels in the intermediate view, and Vth is a 
threshold to divide the image into important and non-important 
regions. Here, Vth is empirically set to 0.25.

For another global perspective, bidirectional statistical 
distances between the source and retargeted intermediate views 
are calculated according to the forward rewarping and 
backward rewarping [26], respectively, as:

255

6
1

r s
i

f i iH H                              (18)

255

7
1

r s
i

f i iH H                              (19)

where sH and rH are the normalized color histograms of the 
source and retargeted intermediate views, respectively, and sH
and rH denote the normalized color histograms of the forward 
and backward rewarped images, respectively. 
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Fig. 6. Framework of the content-aware quality measure.

Authorized licensed use limited to: Xiamen University. Downloaded on May 25,2021 at 15:03:08 UTC from IEEE Xplore.  Restrictions apply. 



1520-9210 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMM.2021.3081259, IEEE
Transactions on Multimedia

Additionally, the above quality-aware features extracted 
from the intermediate views are the relative distance/similarity 
between two intermediate views without involving the 
intermediate view itself, but the quality of the retargeted 
intermediate view may indirectly reflect the consistency/ 
inconsistency between the left and right retargeted images. 
Since the Difference-of-Gaussian (DoG) decomposition is a 
validated effective way to capture the edge and texture 
characteristics of the scenes [44], the DoG-based statistical 
features are computed to evaluate the naturalness of the 
retargeted intermediate view. Specifically, for an input 
grayscale I associated with the retargeted intermediate view, 
the Gaussian low-pass filter is adopted for the scale space 
representation as:

, , , , , 0,3k kF x y I x y G x y k            (20)
where k denotes the standard deviation of the Gaussian model 
at the k-th scale. In this paper, 1 = 0.3, 2 = 0.5 and 3 = 0.8 are 
set empirically, and k=0 denotes the original scale. Then, the 
k-th DoG image is defined as:

1, , , , 0, 2k k kD x y F x y F x y k              (21)
For each DoG image, the MSCN coefficients can be

calculated by the local mean subtraction and divisive 
normalization [45]:

, ,ˆ ,
, 1

k k
k

k

D i j i j
D i j

i j
                          (22)

where k(i, j) and k(i, j) denote the local mean and standard
deviations, and the local window size of 7×7 is set in the 
calculation. Finally, the standard deviation of the achieved 
MSCN coefficients associated with each DoG image is 
computed as the statistical feature, denoted as f8, f9 and f10. As a 
result, the final content-aware feature component is represented 
as FCA = [f5, f6, f7, f8, f9, f10].

B. Depth-aware Quality Measure
Visual comfort/discomfort and depth sensation are another 

two main aspects in the 3D perception of a retargeted stereopair 
[17]. Firstly, we characterize the visual comfort/discomfort 
based on the following factors: 1) The binocular disparity that 
exceeds the tolerated value may lead to the failure in binocular 
fusion; 2) Since the object which produces the crossed disparity 
is perceived in front of the screen while the object which 
produces the uncrossed disparity is perceived behind the screen, 
the crossed disparity plays an important role in affecting the 
visual comfort; 3) The viewer will feel visual discomfort if the 
disparity does not lie within the visual comfort zone [46], e.g., 
[-1°, 1°] of disparity angle. Considering the above aspects, the 
corresponding statistical features, including variance of pixel 
disparity (f11), mean of pixel disparity in the visual discomfort 
zone (f12), range of angular disparity (f13) and mean of crossed 
angular disparity (f14), are calculated as:
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where Dp(x, y) and Da(x, y) denote the pixel disparity value and 
angular disparity value at the pixel position (x, y), respectively, 
W and H are the width and height of the disparity map, 
respectively, p is the mean of the pixel disparity map, d and 

c denote the index sets corresponding to the visual discomfort 
zone and the crossed (negative) disparities, respectively, A1 and
A2 denote the number of pixels in d and c, respectively.

Secondly, as revealed in [17], monocular regions (e.g, the 
occluded region and the region out of field-of-view 
(Out-FOV)), can reflect depth sensation. However, the SIR 
process may change the size of the two regions, which will 
destroy the depth perception of the retargeted stereopair. To 
reflect the distortion, the statistical feature is calculated as:

15 3 4
1f A A

W H
                             (27)

where A3 and A4 denote the number of pixels in the occluded 
regions and the regions Out-FOV, respectively. The occluded 
regions and the regions Out-FOV are detected using the method 
in [47]. Moreover, the perceptual experiments in [20] show that 
perception tends to be more stable when monocular regions are 
more visually similar to the binocular background. Thus, the 
statistical gradient similarity between the monocular regions 
and binocular background in the retargeted stereopair is 
calculated to measure the perception stability:

16 2 2

2 m g

m g

G G
f

G G C
                         (28)

where 2x yG G G is the gradient map of the left 

retargeted view, and m and g denote the skewness statistics 
associated with the monocular regions and the binocular 
background, respectively. As a result, the final depth-aware 
feature component is represented as FDA = [f11, f12, f13, f14, f15, 
f16].

C. Quality Evaluation

TABLE II
SUMMARY OF THE EXTRACTED 16-DIM FEATURES.

Feature Types Symbol Feature Components

Geometric-aware features FGA f1 - f4

Content-aware features FCA f5 - f10

Depth-aware features FDA f11 - f16

With the extracted feature components FGA, FCA and FDA, as 
shown in Table II, we first map these feature components from 
feature space to quality space using support vector regression 
(SVR) with the radial basis function (RBF) kernel to learn a 
quality predictor. Then, the quality predictor is utilized to 
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predict the quality score of the retargeted stereopair. Note that 
other machine learning methods can also be used for quality 
pooling, we conduct the related experiments to investigate the 
impact of different pooling methods in the section that follows. 

IV. EXPERIMENTS

A. Databases and Experimental Protocols
In the experiment, two benchmark databases, NBU SIRQA 

[17] and SIRD [16], are used to test the performance of the 
proposed method. The former database contains 45 source 
stereopairs and 720 retargeted stereopairs created by eight SIR 
operators, and two retargeting scales (25% and 50%) are 
included. The latter database consists of 100 source stereopairs 
and 400 SIR results produced using four SIR operators, and the
retargeting scale is 30%. Both databases provide the mean 
opinion score (MOS) for each retargeted stereopair as ground 
truth of the image quality, where a larger MOS means the better 
image quality. The basic introduction of the databases is 
summarized in Table III. As suggested in [50], the performance 
of an objective IQA metric can be evaluated from two aspects, 
i.e., prediction accuracy and prediction monotonicity. In this 
work, we adopt three common performance criteria, i.e. 
Pearson Linear Correlation Coefficient (PLCC), Spearman 
Rank order Correlation Coefficient (SRCC) and Root Mean 
Square Error (RMSE), to benchmark the IQA metrics. PLCC 
and RMSE are used to measure the prediction accuracy, while 
SRCC is used to measure the prediction monotonicity. A metric 
with higher PLCC and SRCC, and lower RMSE is deemed to 
have good performance. For each database, we randomly 
divide it into two non-overlapping image subsets: 80% of the 
data for training while the rest 20% for testing. The average 
result after 1000 iterations is reported.

B. Performance Comparison
We compare the proposed method with eight IRQA metrics 

on NBU SIRQA database, including: five metrics designed for 
2D retargeted images (SIFT-flow [37], BDS [51], EMD [52], 
HCDL [53] and ARS [12]), and three metrics designed for 
retargeted stereopairs (Liu’s method [15], Zhou’s method [16] 
and GDIL [17]). The results of the whole database and the 
subsets associated with the individual retargeting scale are 
presented in Table IV. From the table, we have the following 

observations: 1) Most 3D metrics (i.e., Zhou’s method [16] and 
GDIL [17]) perform better than 2D metrics own to considering 
the 3D perceptual properties. 2) The best performance of these 
metrics is achieved by GDIL [17], which is still lower than our 
method owing to adopting the uniform grid-based method 
which ignores the structure attribute of the image. 3) The 
results on the whole database show higher performance than 
those on the two subsets due to the more obvious difference 
between the retargeted stereopairs associated with different 
retargeting scales than that associated with the same retargeting 
scale. Moreover, we have plotted in Fig. 7 the SRCC values of 
the competitive methods for retargeted stereopairs associated 
with each of 45 source stereopairs on NBU SIRQA database. It 
can be seen that our method delivers higher performance than 
most competitive methods, or it is comparable to GDIL for 
some groups. Overall, our method achieves the best 
performance on the whole database and the two subsets, which 
validates the effectiveness of the newly adopted intermediate 
view-based method and the superpixel-based approach.

Table V further summarizes the experimental results on 
SIRD database. It is observed from the table that both 2D IRQA 
and 3D IQA design for traditional images (i.e. 3DAVM [54] 
and 3DVDP [55]) cannot well evaluate the quality of retargeted 
stereopairs due to the fact that the former fails to handle the 
complicated 3D perceptual task while the latter is unable to 
capture the geometric distortion and content loss in retargeted 
stereopairs. The proposed method delivers the best 
performance in terms of both prediction accuracy and 
prediction monotonicity against other competing metrics, 
including 2D IRQA, 3D IQA design for traditional images and 
SIRQA. It indicates that the combination of geometric-aware, 
content-aware, and depth-aware quality measures can work 
well on retargeted stereopairs.

C. Impact of Training Set
To explore whether the quality prediction performance of the 

proposed method relies heavily on the training data, we 
conduct the experiments by changing the percentage of the 
training set size which varies from 20% to 80% and the 
remaining images are used for testing, and the average 
performance indices across 1000 random trials are presented in 
Table VI. Observations show that the proposed method still 
achieves relatively good performance on NBU SIRQA and 

TABLE III
BASIC INTRODUCTION OF THE USED BENCHMARK DATABASES

Databases Source
stereopairs

Retargeted 
stereopairs

Retargeting 
scale SIR operators

NBU-SIRQA [17] 45 720 0.25, 0.5

Monocular Seam Carving [21], Monocular Scale and Stretch 
[48], Content Persistent Cropping [36], Stereo Scaling, 
Geometrically Consistent Stereo Seam Carving [1], Visual
Attention Guided Seam Carving [24], QoE-guided Warping 
[4], Single-layer Warping [2]

SIRD [16] 100 400 0.3 Stereo Cropping, Stereo Seam Carving [1], Stereo Scaling, 
Stereo Multi-operator  [49]
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SIRD databases even only 50% of the images are used for 
training, and the performance of the proposed method does not 
change drastically with the reduction of training data, which 

coincides with the conclusions drawn from the learning-based 
approaches [57,58]. 

TABLE IV 
PERFORMANCE OF DIFFERENT METRICS ON NBU SIRQA DATABASE

Metric
25% retargeting scale 50% retargeting scale All

PLCC SRCC RMSE PLCC SRCC RMSE PLCC SRCC RMSE

SIFT-flow [37] 0.1753 -0.1321 10.7355 0.2553 -0.2257 9.9736 0.1019 0.0542 14.8731
BDS [51] 0.2112 -0.1519 10.6584 0.0814 -0.1561 10.2812 0.2791 0.2751 14.3882
EMD [52] 0.1778 -0.1619 10.7306 0.1828 -0.1545 10.1416 0.3480 0.3858 14.0167
HCDL [53] 0.4157 0.3614 9.9620 0.3823 0.3599 9.5425 0.7261 0.7215 11.8422
ARS [12] 0.4792 0.4492 9.6887 0.4993 0.4799 8.9380 0.7833 0.7745 9.2950
Liu [15] 0.3887 0.3423 9.7728 0.3884 0.3522 9.4414 0.6138 0.5910 12.0756

Zhou [16] 0.6054 0.5616 8.6625 0.6202 0.5813 8.1511 0.8146 0.8054 8.6338
GDIL [17] 0.6150 0.5685 8.5868 0.6555 0.6315 7.7866 0.8371 0.8315 8.1083
Proposed 0.6638 0.6459 8.2885 0.7367 0.7165 6.9256 0.8554 0.8502 7.7562
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Fig. 7. Comparisons of the SRCC values of the competitive methods for retargeted stereopairs associated with each of 45 source stereopairs on NBU SIRQA 
database.

TABLE V
PERFORMANCE OF DIFFERENT METHODS ON SIRD DATABASE

Metric Type PLCC SRCC RMSE

SIFT-flow [37] 2D 0.2054 0.1625 1.0559
EMD [52] 2D 0.4892 0.4651 0.9384

HDPM [56] 2D 0.7757 0.7607 0.6767
3DAVM [54] 3D 0.5737 0.5699 0.8705
3DVDP [55] 3D 0.5768 0.5847 0.8781

Liu [15] 3D 0.3991 0.3960 0.8957
Zhou [16] 3D 0.8670 0.8494 0.5237
GDIL [17] 3D 0.8417 0.8041 0.5097
Proposed 3D 0.8827 0.8561 0.4435
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D. Impact of Different Pooling Methods
To investigate the impact of different quality pooling 

methods on the performance of the proposed method, we use 
five different pooling schemes to fuse into the extracted 
features, including Random Forest (RF), Extreme Learning 
Machine (ELM), SVR with the linear kernel (L-SVR), SVR 
with the polynomial kernel (Poly-SVR), and SVR with the RBF 
kernel (RBF-SVR), and the results are shown in Table VII. The
table shows that RF, ELM and RBF-SVR deliver better 
performance than L-SVR and Poly-SVR. Although RF and 
RBF-SVR have the similar performance, the two schemes cost
124.092s and 63.058s during 1000 iterations train-test process 
on a personal computer with Intel Core i5-9400 CPU @2.9 
GHz and an 8 GB RAM, respectively. Therefore, RBF-SVR
can be adopted by considering prediction accuracy, prediction 
monotonicity and computational complexity comprehensively.

E. Ablation Study
To separately investigate the contribution of each individual 

feature component as well as their mutual effects, we conduct
the ablation study on the two databases. The experimental 
results are summarized in Table VIII, and the detailed results 
for each feature are listed in Table IX. From the table, we have 
two observations: Firstly, each component makes positive 
contribution to the overall performance, which indicates that 
these components have complementary information. Secondly, 
the contribution of the components is not the same, where the 
scheme only using geometric-aware component FGA or 
content-aware component FCA delivers better performance than 
the scheme only using depth-aware component FDA, which 
demonstrates that geometric distortion and information loss are 

the main factors leading to quality degradation of retargeted 
stereopairs.

E. Further Discussion
In this paper, we propose a quality evaluation method for 

retargeted stereopairs by combining image quality and depth 
perception measures. Although the proposed method has 
delivered better performance than the existing metrics designed 
for 2D retargeted images and the state-of-the-art quality metrics 
specially designed for retargeted stereopairs, the following 
issues still need to be considered in the future work:

1) The quality of synthesized intermediate views largely 
depends on the performance of virtual view synthesis method, 
which further affects the accuracy of image quality measures. 
Therefore, the more effective virtual view synthesis method is 
expected to promote the performance.

2) In addition to image quality and depth perception quality, 
image aesthetics is another potential factor affecting the overall 
perceptual quality of retargeted stereopairs. Towards a more 
powerful quality metric for retargeted stereopairs, subjective or 
objective aesthetics evaluation of retargeted stereopairs may be 
considered in the future research.

V. CONCLUSION

In this paper, we present a quality assessment method for 
retargeted stereopairs by jointly measuring image quality on the 
synthesized intermediate view and the depth perception quality 
from two aspects, i.e., visual comfort/discomfort and depth 
sensation. Specifically, the superpixel-based and edge-based 
features between the source and retargeted intermediate views 
are extracted to evaluate the geometric distortion, while the 

TABLE VI
PERFORMANCE RESULTS WITH DIFFERENT TRAINING SET SIZES

Train-Test
NBU SIRQA SIRD

PLCC SRCC RMSE PLCC SRCC RMSE

20%-80% 0.7749 0.7748 9.4410 0.8282 0.8090 0.5360
30%-70% 0.7996 0.7992 8.9628 0.8491 0.8277 0.5053
40%-60% 0.8152 0.8139 8.6394 0.8615 0.8395 0.4858
50%-50% 0.8281 0.8260 8.3672 0.8693 0.8465 0.4724
60%-40% 0.8388 0.8357 8.1254 0.8749 0.8514 0.4613
70%-30% 0.8488 0.8444 7.9019 0.8800 0.8550 0.4516
80%-20% 0.8554 0.8502 7.7562 0.8827 0.8561 0.4435

TABLE VII
PERFORMANCE COMPARISON OF DIFFERENT POOLING METHODS ON NBU SIRQA DATABASE

Criteria RF ELM L-SVR Poly-SVR RBF-SVR

PLCC 0.8585 0.8481 0.8215 0.7729 0.8554
SRCC 0.8499 0.8442 0.8159 0.7861 0.8502
RMSE 7.6054 7.9361 8.5196 9.3754 7.7562
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local statistical similarity and global statistical distance are 
calculated to reveal the content loss. Meanwhile, several 
depth-aware features are combined to characterize the visual 
comfort/discomfort and depth sensation. Experimental results
verify the superiority of the proposed method against the 
competing metrics on the NBU SIRQA and SIRD databases.
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