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Abstract—Marine animal studies are of great importance to
human beings and instrumental to many research areas. How to
identify such animals through image processing is a challenging
task that leads to marine animal segmentation (MAS). Although
deep neural networks have been widely applied for object segmen-
tation, few of them consider the complex imaging condition in the
water and the camouflage property of marine animals. To this end,
a robust deep marine animal segmentation network is proposed in
this article. Specifically, we design a new data augmentation strat-
egy to randomly change the degradation and camouflage attributes
of the original objects. With the augmentations, a fusion-based deep
neural network constructed in a Siamese manner is trained to learn
the shared semantic representations. Moreover, we construct a new
large-scale real-world MAS data set for conducting extensive ex-
periments. It consists of over 3000 images with various underwater
scenes and objects. Each image is annotated with an object-level
mask and assigned to a category. Extensive experimental results
show that our method significantly outperforms 12 state-of-the-art
methods both qualitatively and quantitatively.

Index Terms—Fusion, image degradation, marine animal
segmentation (MAS), object camouflage, Siamese network.

I. INTRODUCTION

THE exploration of underwater environments has been an
active engagement across a plethora of scientific fields,

such as ocean ecology, marine geological sciences, and natu-
ral resources discovery. Recently, visually guided underwater
robots and intelligent underwater monitoring systems become
instrumental tools or equipment to assist these activities effec-
tively, and many image processing algorithms have been de-
veloped to serve various purposes. However, existing solutions
for conducting marine scene parsing and object segmentation
are largely underexplored. In this article, it is our great inter-
est in developing image segmentation algorithms to perform
marine animal segmentation (MAS), particularly for a highly
ill-conditioned underwater environment.
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Fig. 1. Four typical marine images for demonstrations. (a) and (b) Degraded
into low quality. (c) and (d) Camouflaged objects.

The visual contents of underwater images are usually de-
graded due to the wavelength-dependent absorption and scat-
tering effects [1], [2], [3]. As a result, images acquired in under-
water environments tend to have poor visibility, low contrast, and
unwanted color casts. Such severely degraded underwater im-
ages are unfavorable and incur obstacles to scene understanding
and object segmentation. Challenges can be further compounded
if the object of interest is camouflaged and seamlessly blended
with the environment. This is often encountered in many marine
animals that have been evolving themselves for survival in the
underwater ecosystem [4], [5]. The similarity between marine
animals and their background further increases the difficulty
of accurately segmenting them from underwater scenes. For
demonstration, two images with degraded image quality are
shown in Fig. 1(a) and (b), and two camouflaged animals are
shown in Fig. 1(c) and (d).

Related to marine animal image processing, some methods
have been proposed to enhance the image quality [6], [7], [8], [9],
[10], [11], [12], [13], [14]. These methods might be indirectly
beneficial to the MAS task. On the other hand, camouflaged ob-
ject segmentation (COS) methods [15], [16], [17] aim to identify
objects that are assimilated into their surroundings. However, the
current COS approaches might be sensitive to image degradation
since they are specifically designed for terrestrial objects, and
they do not consider the optical distortions incurred by the water.

In this article, we propose a deep marine animal segmentation
network (MASNet) for robust MAS. The core idea of our method
is to combine the Siamese architecture with data augmenta-
tion techniques to reduce the impact of image degradation and
object camouflage. Specifically, the proposed data augmenta-
tion strategy is performed at both image and object levels to
randomly change the degradation and camouflage attributes
of the original image. With the augmented images, we train
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MASNet in a Siamese pipeline to force the network to learn
the shared semantic features of the two inputs. We elaborately
design an attention-guided cross-level fusion module to integrate
multilevel features. The fusion-based architecture is helpful to
aggregate low-level and high-level features for better local and
global perception. We also introduce a modified receptive field
block (RFB) [18], [19] to enhance the representations. Two types
of loss functions are employed to guide the network training,
including a task loss for segmentation and an alignment loss for
better representation learning.

To the best of our knowledge, there is only one large-scale
object-level labeled data set for MAS [4]. To this end, we
construct a new large-scale MAS data set, which contains over
3000 real-world underwater images. We annotate an object-level
mask and a related category for each image. This new data set
can be used for training and evaluating MAS models.

We summarize the main contributions of this article as fol-
lows.

1) To simultaneously tackle the image degradation and the
object camouflage problems in MAS, we develop a new
data augmentation strategy and train the network in a
Siamese fashion to encourage the model to learn shared
semantic features.

2) We construct a new MAS data set that contains more than
3000 images with different underwater scenes and objects.
Each image is annotated with an object-level mask and a
category. This data set can be used for training and testing
MAS models.

3) Extensive experiments show that the proposed method
achieves state-of-the-art performance in the terms of sev-
eral objective evaluation metrics on two MAS benchmark
data sets.

The rest of this article is organized as follows. In Section II, we
introduce related works. In Section III, we detail the proposed
approach. In Section IV, we present the experimental results.
Finally, Section V concludes this article. The project page of
this work is available at https://github.com/zhenqifu/MASNet.

II. RELATED WORK

A. Underwater Image Degradation and Quality Enhancement

Underwater images suffer from quality degradation (e.g.,
contrast distortion, low visibility, and color shift) due to light
absorption and scattering effects. In clean water, red light dis-
appears first at about 5 m water depth. As the depth increases,
yellow and green lights disappear subsequently. The blue light
with the shortest wavelength travels the furthest distance in the
water [20]. As a result, underwater images are usually dominated
by green and blue colors. Apart from the wavelength-dependent
light absorption, suspended particles in the water affect scene
contrast and produce haze-like effects by absorbing lights. More-
over, the diversity of underwater scenes (e.g., turbid water and
deep oceanic water) causes different distortion types and lev-
els [21]. Degraded underwater images are detrimental to visual-
based applications, such as object identification, detection, and
segmentation. To tackle the above issues, underwater image
enhancement (UIE) techniques have been proposed and become

the essential preprocessing step [2]. Generally, UIE methods
can be divided into three categories, i.e., model-free, model-
based, and learning-based methods [3]. Model-free approaches
enhance underwater images without using the physical imaging
model. For example, the authors proposed a fusion-based UIE
method in [6] and an improved version in [22]. Model-based
methods enhance underwater images under the guidance of the
degradation model with manually designed prior constraints.
The image dehazing model and its variants are the most used
degradation models in existing UIE methods [7], [8], [23].
Researchers also developed various prior features to improve
the quality of enhanced/restored underwater images [24], [25],
[26], [27]. Recently, deep learning has achieved excellent break-
throughs in various domains [28], [29], [30]. A lot of deep
learning-based UIE methods have been proposed [1], [9], [10],
[31], [32], [33].

B. Camouflage Object Segmentation

Camouflage object segmentation (COS) is an emerging field
and attracts increasing attention in recent years. COS aims to
segment objects with similar patterns to their surroundings.
Traditional works on COS use handcraft visual features, such
as color, texture, and gradient [5]. However, the techniques
relying on a single feature cannot provide promising perfor-
mance. Besides, owing to the limitation of hand-crafted fea-
tures, these methods are only suitable for relatively simple
scenarios and may fail in real-world applications. Currently,
deep learning has been employed for COS by extracting deep
features automatically from extensive training images, which
are more generic and effective than hand-crafted features. For
example, Fan et al. [5] collected a large-scale COS data set that
contains 10 000 images covering camouflaged objects in various
natural scenes with over 78 object categories. In addition, the
authors proposed a deep-learning-based COS method based on
the receptive field and partial decoder component. An improved
version of [5] is presented in [34]. The network contains a
texture-enhanced module, a neighbor connection decoder, and
group-reversal attention to identify objects that are visually
embedded in their background. Le et al. [35] constructed a COS
data set called CAMO and proposed to leverage both classifi-
cation and segmentation tasks to promote COS performance.
Li et al. [36] leveraged the contradictory information to
enhance the detection ability of both salient and camou-
flaged objects. Yang et al. [37] developed a COS network
based on Bayesian learning and Transformer-based reasoning.
Lv et al. [15] presented a ranking-based COS network, which
simultaneously localized, segmented, and ranked camouflaged
objects. Liu et al. [38] designed a confidence-aware network
for accurate camouflaged objection. Pang et al. [39] proposed a
mixed-scale triplet network to imitate the behavior of human
beings when observing camouflaged objects. Other relevant
works of COS can be found in [16] and [17].

C. Marine Animal Segmentation

Deep-learning-based object segmentation has made remark-
able progress over the past few decades thanks to the advent of
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Fig. 2. Overall framework of the proposed method. In the training phase, our
approach consists of a MADA module, a Siamese segmentation network, a task
loss, and an alignment loss. In the testing phase, we adopt a single branch to
predict the segmentation result from the raw underwater image.

deep models [29], [40] and large-scale annotated data sets [41],
[42]. Various methods have been proposed for different visual
tasks, such as fully convolutional network [43] for semantic seg-
mentation and U-Net [28] for biomedical image segmentation.
Despite the advancements, MAS is considerably less studied.
Several important contributions have been made to address the
problems of coral reef classification and segmentation [44],
[45], fish detection and segmentation [46], [47], underwater
semantic segmentation, and saliency prediction [48]. Recently,
Li et al. [4] have constructed the first large-scale data set for
MAS named MAS3K. This data set contains over 3000 images
with different degradation types, such as low illumination, turbid
water quality, and photographic distortion. The data set includes
both camouflaged and common objects. Each image from the
MAS3K data set has rich annotations, including an object-level
mask, a category, object attributes, and the camouflage strategy.
Based on the data set, the authors proposed a deep MAS network
with an interactive feature enhancement module and a cascade
decoder. The feature enhancement module aims to refine the
features extracted from the backbone network. The cascade
decoder receives features and predicts the segmentation result.

III. METHOD

Fig. 2 outlines the framework of our MASNet, which com-
prises a marine animal data augmentation (MADA) module, a
Siamese segmentation network, a task loss, and an alignment
loss. In the training phase, we first generate an augmented
instance of each original image. Then, the two images are fed
into the Siamese segmentation network yielding two predictions.
A task loss is applied to supervise the segmentation. Besides,
we align the two outputs to encourage the network to learn
the shared semantic information. In the testing phase, we use
a single branch of the Siamese segmentation network to predict
the result.

A. Data Augmentation for MAS

In this article, we consider the following two obstacles in
MAS. The first is the diverse degradation of underwater images.

Fig. 3. Overview of the proposed MADA. (a) Image-level random augmen-
tation within a mini-batch. As an example, we set the batch size to 6. Each
color denotes an image style and xi denotes the image content. (b) Object-level
random augmentation with the guidance of object masks, where only objects
in the image are augmented. Animals may be no longer camouflaged after the
object-level augmentation.

Owing to the wavelength-dependent light scattering and absorp-
tion, underwater images usually have low quality with different
appearances. For example, images captured in coastal water,
deep oceanic water, and muddy water show different distortion
types. Since we cannot obtain all degradation types and levels,
it is challenging to segment marine animals from complex
underwater environments with high accuracy and generaliza-
tion performance. The second is the camouflage properties of
marine animals. Body colors, patterns, and other morphological
adaptations of marine animals will significantly decrease their
probability of being detected and segmented by both humans and
machines. In this article, we use data augmentation techniques
to reduce the impact of image quality degradation and object
camouflage.

To address the degradation problem, we propose an image-
level augmentation strategy, which randomly perturbs the style
information of each training instance in a mini-batch. Fig. 3(a)
shows an example of such augmentation. Let x1–x6 be six in-
stances in a mini-batch. Note that the batch size can be arbitrary;
we set 6 here as an example. Each color denotes an image
style. We first generate a reference batch via random shuffling
of the original batch. Then, we replace the low-frequency part
of the amplitude of the original image with that of the shuffling
image [49]. This results in a new mini-batch, in which each
instance has the same semantic content but a different style from
the original one. Specifically, for each instance in a mini-batch,
we first perform the Fourier transform [50] to obtain the ampli-
tude and phase components. We use FA and FP to express the
amplitude and phase components of an instance, respectively.
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Fig. 4. Examples of MADA results. (a) Image-level augmentation. (b) Object-level augmentation. The original images are presented in the first line and the
MADA results are shown in the second line.

Image-level augmentation can be formalized as

xs→t = F−1(m ◦ FA(xt) + (1−m) ◦ FA(xs),FP(xs))
(1)

where F−1 denotes the inverse Fourier transform that maps
spectral signals (phase and amplitude) back to the image space.
m ◦ FA(xt) + (1−m) ◦ FA(xs) refers to replacing the low-
frequency part of the amplitude of the source image xs with
that of the target image xt. m is the mask to calculate the
low-frequency part, whose value is zero except for the central
region with the size of 2× 2. Finally, the augmented image xs→t

has same content with s but similar style with t.
Apart from the image-level augmentation, we further pro-

pose object-level augmentation to tackle the camouflage issue
in MAS. As illustrated in Fig. 3(b), this operation randomly
changes the appearance of camouflaged objects with the guid-
ance of their masks. Different from the image-level augmenta-
tion that replaces style information in a mini-batch, we directly
adjust objects’ color, saturation, and contrast, to discriminate
them from the background or conceal them in the surroundings.
Such objective-level augmentations are implemented follow-
ing the recommendation of contrastive learning method [51].
Object-level augmentation can be formalized as

xt = M ◦ T (x) + (1−M) ◦ x (2)

where M denotes the object mask. T refers to the transform
function of color, saturation, and contrast. Obviously, the aug-
mented image xt has the same background as the original image
but different object styles.

Fig. 4 shows examples of augmented images, where we can
notice that image-level augmentation focuses on the image
degradation problem, and object-level augmentation concen-
trates on the camouflage issue. In our method, we simultaneously
perform the image-level and object-level augmentation in each
iteration to achieve better representation learning.

Since it is impossible to create all degradation types and levels,
instead of directly training a network based on the augmented
images, we combine the proposed MADA with a Siamese
network. As presented in Fig. 2, we additionally employ an
alignment loss to encourage the network to learn the shared
semantic information. Note that, in the testing phase, we only
use one branch of the Siamese network to predict the result.

That means our method will not increase the computational and
memory costs in the testing phase.

B. Cross-Level Fusion Network for MAS

For each branch of the Siamese network, we design a cross-
level fusion pipeline to aggregate both low-level and high-level
features. Fig. 5 details the overall architecture of the proposed
network, which consists of a Res2Net [18] backbone (E1–E5),
a feature enhancement module (RFB), and attention-induced
cross-level fusion decoder.

1) Backbone and Feature Enhancement Module: We adopt
Res2Net-50 [18] as the backbone to extract features at five
different scales, denoted as Ei (i = 1, 2, ..., 5). Rather than
directly using those features for the segmentation, we leverage
an RFB [18] to enhance the extracted features. The RFB is em-
ployed to expand the receptive field for capturing richer features
in specific layers. We use the same settings as recommended
in [18] for implementing the RFB. Fig. 6 shows the details of
RFB, which includes five parallel branches bk (k = 0, 1, ..., 4).
In each branch, the first convolutional layer utilizes a 1× 1
convolution to reduce the channel size to 64. This is followed
by two layers, i.e., a (2k − 1)× (2k − 1) convolutional layer
and a 3× 3 convolutional layer with a specific dilation rate
(2k − 1) when k ≥ 2. In our implementation, we factorize the
first convolution layer of size (2k − 1)× (2k − 1) as a sequence
of two steps with (2k − 1)× 1 and 1× (2k − 1) kernels, speed-
ing up the inference efficiency without decreasing the represen-
tation capabilities. The four branches bk (k = 1, ..., 4) are then
concatenated and their channel size is reduced to 64 using a
1× 1 convolutional operation. Finally, the first branch is added,
and the whole module is fed to a rectified linear unit (ReLU)
activation function to obtain the enhanced feature.

2) Cross-Level Feature Fusion: After extracting feature
pyramids from weakly semantic and high-resolution to strongly
semantic and low-resolution, we develop an attention-guided
cross-level fusion decoder to integrate the diversified features.
The reasons we apply such feature pyramids are twofold:

1) There are natural differences in the shape and size among
different types of marine animals. The size of similar
objects may also vary greatly, due to the observation
distance and their relative location to the surroundings.
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Fig. 5. Architecture of the segmentation network. It consists of a Res2Net backbone (E1–E5), a feature enhancement module, i.e., RFB, and an attention-induced
cross-level fusion decoder. The detailed structure of the fusion unit is shown in the left lower part. Specifically, we integrate both low-level (blue line) and high-level
(green line) features to achieve better local–global perception.

Fig. 6. Architecture of RFB.

2) Features at different levels have different contributions
to the MAS task. Fusing features at multiple levels can
complement each other to obtain a comprehensive feature
expression.

The details of the cross-level fusion decoder can be found
in Fig. 5. Concretely, we first add two branch features elemen-
twisely. If the feature size is different, a bilinear upsampling
operation will be first conducted. Then, with the guidance of
attention, we obtain the fusion weight for each spatial position.
Finally, elementwise multiplication is performed to compute
integrated features. The cross-level fusion process can be for-
mulated as

fab = (fa ⊕ fb)⊗A (fa ⊕ fb) (3)

where ⊕ denotes the elementwise add operation and ⊗ rep-
resents elementwise multiplication; A indicates the attention

function. In this article, we employ SimAM [52] to calculate
the fusion weight. It optimizes an energy function to find
the importance of each neuron according to some well-known
neuroscience theories. In addition, SimAM is parameter-free
and computationally efficient. This is important for underwater-
related applications that prefer low-complexity and low-power
algorithms. Note that designing novel attention methods is not
our target, and a more advanced attention operator may further
promote our segmentation performance. Different from most
of the existing methods that only use high-level features [5],
[16], we consider that both low-level and high-level features
will benefit the MAS task. High-level features are more relevant
to semantic information, while low-level features are location
dependent and can capture rich edge information. Therefore, we
utilize all five-scale features to calculate the final segmentation
prediction.

C. Loss Functions

Two kinds of loss functions are designed in MASNet. The
first one is the task loss for learning binary segmentation maps.
Specifically, we use the binary cross-entropy (BCE) loss to
independently calculate the loss of each pixel to form a pixel
restriction on the network. To make up for its deficiency of
ignoring the global structure, we also employ intersection over
union (IoU) loss [53] to form a global restriction on the network.
In summary, the segmentation loss function adopted in our
network is defined as

LSeg = LBCE(P1, G) + LIoU(P1, G) (4)

where P1 refers to the network prediction and G denotes the
ground-truth mask.

The second one is the alignment loss that encourages the
network to learn semantic-relevant features, which means the
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Fig. 7. Examples of images in the RMAS data set. (a) Sea products. (b) Big fish. (c) Small fish. (d) Turtle. (e) Others.

model is expected to output the same predictions of the original
and augmented inputs since they share the same objects. Here,
we compute the mean square error between two outputs

LAlign = LMSE(P1, P2) (5)

where P1 and P2 are estimations from original and augmented
input, respectively. Finally, the total loss of our method is defined
as

Ltotal = LSeg + LAlign. (6)

D. Real-World Marine Animal Segmentation (RMAS) Data Set

Since there are limited data sets for training and testing
MAS models, we construct a new data set named RMAS. The
detailed information and properties of the proposed data set are
as follows.

1) Image Collection and Annotation: RMAS contains 3014
real-world underwater images with different scenes and degrada-
tion types, which are mainly collected from existing underwater
image processing data sets including SUIM [48], UFO [54],
DeepFish [55], and URPC.1 In this article, we roughly divide
those images into five classes: sea products (including starfish,
sea cucumber, sea urchin, and scallop), big fish, small fish, turtle,
and others. All images in RMAS are annotated at pixel level and
labeled with a class. Fig. 7 shows examples of the collected
images and their corresponding annotations. Note that big and
small fish are classified according to their relative size in the
whole image. The category of others includes shrimp, crab,
jellyfish, hippocampus, and so on. Those animals are simply
classified as “others” due to the limited quantity.

2) Data Set Features and Statistics: Fig. 8 reports the distri-
bution of each category. We can observe that sea products, big
fish, and small fish are the three main categories that account for
92% of the data set. To train and test MAS models, we divide the
whole data set into two parts, i.e., the training set and the testing
set. Table I lists the number of images in each subset. The original

1[Online]. Available: http://urpc.org.cn/

Fig. 8. Distribution of each category.

TABLE I
NUMBER OF IMAGES IN TRAINING AND TESTING DATA SETS

images collected in RMAS have different degradation types
with salient or camouflaged objects. The original images are
of various spatial resolutions from 221× 206 to 3840× 2160.
To further explore the ability of each method in handling image
degradation and object camouflage, we additionally classify the
test images into three categories, i.e., high-quality, low-quality,
and camouflage. Table II shows the number of images in each
category. Concretely, high-quality and low-quality images are
selected according to four measurements, i.e., color deviation,
contrast distortion, illumination condition, and the visibility of
objects. Note that, if an image has camouflaged objects, it will
be divided into “camouflage” regardless of the image quality.
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TABLE II
NUMBER OF IMAGES IN EACH CATEGORY

IV. EXPERIMENTS

In this section, we first describe the implementation details,
the data set for training and testing, evaluation metrics, and
comparison methods. Then, we compare the proposed method
with state-of-the-art MAS methods subjectively and objectively.
Furthermore, ablation studies are conducted to analyze the ef-
fectiveness of each module in MASNet.

A. Implementation Details

We adopt Res2Net50 [18] pretrained on ImageNet as the
network backbone. Other layers of MASNet are randomly ini-
tialized. In the training phase, the input images are resized to
352× 352 and fed into the Siamese network to predict the
segmentation mask. We utilize the Adam optimization algorithm
to optimize the overall parameters by setting the initial learning
rate as 1e−4. The batch size is set to 16. All the experiments
are conducted on a server with Python 3.7, PyTorch 1.7.1, and
Nvidia 3080 Ti GPUs. In the testing phase, we use a single branch
of the Siamese network to calculate the prediction. Specifically,
the image is first resized to 352× 352 for model inference,
and then, the prediction is resized back to the original size of
the input image. Note that both resizing processes use bilinear
interpolation.

B. Data Sets

We conduct experiments on two benchmark data sets. The
details of each data set are as follows.

1) MAS3K [4]: This data set contains a total of 3103 images
with seven superclasses, i.e., mammals, reptile, marine
fish, arthropod, coelenterate, mollusc, and others. Object-
level annotations are provided. According to the original
settings in MAS3K, we use 1769 images for training and
1141 images for testing.

2) RMAS: The data set consists of 3014 images with five
superclasses, i.e., sea products, big fish, small fish, turtle,
and others. We divide the whole data set into two parts,
i.e., the training set (2514 images) and the testing set (500
images). Each image is annotated with an object-level
mask and a category.

C. Competing Methods

We compare the proposed method with 12 state-of-the-art
methods, including UNet++ [56], BASNet [53], PFANet [57],
SCRN [58], U2 Net [59], SINet [5], PFNet [17], RankNet [15],
C2 FNet [16],ECDNet [4], OCENet [38], and ZoomNet [39].
Among them, BASNet, PFANet, SCRNet, and U2 Net are
salient object segmentation methods. SINet, PFNet, RankNet,
C2 FNet, OCENet, and ZoomNet are COS approaches. UNet++
is originally designed for medical image segmentation. ECDNet

is a recently proposed MAS method. For fair comparisons,
we retrain the above methods using default implementations
provided by the authors. Note that we directly use the original
results of ECDNet for comparison since there are no publicly
released implementations.

D. Evaluation Metrics

To comprehensively compare our method with other state-
of-the-art approaches, we utilize five popular metrics to eval-
uate the segmentation performance, i.e., mean intersection
over union (mIoU), S-measure (Sα) [60], weighted F -measure
(Fw

β ) [61], E-measure (mEφ) [62], and mean absolute error
(MAE). Among them, mIoU calculates the average of the in-
tersection between a prediction and ground truth divided by
their union. Sα measures the object-aware and region-aware
structure similarities between a prediction and ground truth.
Fw
β calculates the weighted precision and weighted recall to

measure the overall performance synthetically. mEφ is based
on the human visual perception to evaluate the global and
local accuracy. MAE is a widely used metric that evaluates the
pixel-level error between the normalized prediction and ground
truth. Apart from evaluating the segmentation accuracy, we
adopt model parameters and floating-point operations (FLOPs)
(i.e., floating-point multiplication-adds [29]) to measure the
computational complexity.

E. Performance Comparison

1) Overall Performance: Table III summarizes the quan-
titative results of different methods on two benchmark data
sets. We can observe that the proposed method obtains better
performance than previous methods according to five objec-
tive metrics. Specifically, compared with the recently proposed
MAS method (ECDNet) on MAS3K, our approach significantly
improves the segmentation performance. Among all methods,
C2 FNet and ZoomNet achieve relatively good results. The
reason may lie in that C2 FNet and ZoomNet can capture richer
global context information from multiscale features and scale
integration, respectively.

2) Performance on Each Category: Table III lists the average
performance on the whole data set. To further understand the
effectiveness of each method, Table IV reports the segmentation
performance of each category. Note that, although MASK has
seven classes, no image belongs to the “others” category in the
testing set. From Table IV, one can find that, on the whole,
MASNet and ZoomNet outperform other approaches. The pro-
posed method is good at segmenting marine fish, especially
the small fish in RMAS. Besides, no method can obtain the
best performance in all categories, and there is a large room to
promote the MAS performance.

3) Performance on High-Quality, Low-Quality, and Camou-
flage Images: The RMAS testing set is divided into three classes
to study the effectiveness of each method in handling image
degradation and object camouflage. Table V reports the model
performance on those three classes. From the table, we can make
the following observations.
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TABLE III
QUANTITATIVE COMPARISON WITH STATE-OF-THE-ART METHODS ON MAS3K AND RMAS DATA SETS ACCORDING TO FIVE MEASUREMENTS

TABLE IV
QUANTITATIVE COMPARISON (mIoU) ON EACH CLASS

a) High-quality image set achieves comparatively higher per-
formance. This is reasonable since it is easy to segment
objects with a clear appearance and texture.

b) Degraded underwater images and camouflaged objects are
unfavorable for segmentation due to their poor visibility
and low contrast, especially for camouflaged objects that
achieve the worst performance.

c) Compared with other methods, MASNet can better han-
dle the degraded image, meanwhile having a competitive
performance on high-quality and camouflage sets.

4) Computational Complexity: Table VI reports the model
parameters and FLOPs. From the table, we can observe that the
proposed method is relatively lightweight compared with the
recently proposed deep-learning-based methods, such as Zoom-
Net and OCENet. Although UNet++ and C2 FNet obtain the
lowest parameters and FLOPs, respectively, their segmentation
performance is inferior to our method. Table VI demonstrates
that the proposed approach can better balance the computational
complexity and segmentation performance.

5) Qualitative Evaluation: Fig. 9 shows the subjective com-
parison of MASNet with the others. It can be seen that MASNet
is capable of accurately segmenting marine animals in diverse
degraded underwater scenes. MASNet can achieve better visual
results by detecting more accurate and complete objects with
rich details. Moreover, MASNet also can infer the camouflaged
objects concealed in different environments more accurately.
This is mainly because our Siamese network with the MADA
module can effectively reduce the impact of image degradation
and object camouflage. In contrast, the state-of-the-art methods
do not take the degradation and camouflage issues into account
simultaneously, which will cause incorrect estimations.

F. Ablation Studies

We further conduct ablation studies to analyze the influence
of the data augmentation, cross-level fusion strategy, and the
feature enhancement module.
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Fig. 9. Visual comparison of the proposed approach with several state-of-the-art methods on the MAS3K and RMAS data sets. The first five images are selected
from MAS3K and the last three are from RMAS.

TABLE V
COMPARISON (mIoU) ON HIGH-QUALITY, LOW-QUALITY, AND

CAMOUFLAGE IMAGES

1) Effectiveness of Data Augmentation: MASNet is trained
based on the Siamese network with image-level and object-level
augmentations. A task loss and an alignment loss are employed
to learn degradation and camouflage irrelevant representations.
Here, we conduct experiments to investigate the effectiveness
of such a training strategy. We have tried the following two
variations over the original MASNet.

TABLE VI
COMPARISON OF MODEL PARAMETERS AND FLOPS

a) Setting A: Directly training the network with original
images (i.e., without MADA and the alignment loss).

b) Setting B: Directly training the network with MADA (i.e.,
without the alignment loss).

Experimental results are listed in Table VII, we can observe
that applying the proposed data augmentation technique and the
training strategy can boost the segmentation performance. In
the table, we find that Setting B obtains the worst results. The
reason may be that directly using MADA for training has a risk
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TABLE VII
ABLATION EXPERIMENTS OF THE DATA AUGMENTATION

TABLE VIII
ABLATION EXPERIMENTS OF THE CROSS-LEVEL FUSION

TABLE IX
ABLATION EXPERIMENTS OF THE FEATURE ENHANCEMENT

of overfitting the augmentation operator. For example, objective-
level augmentation changes objects’ appearance, which allows
the network uses shortcuts (e.g., appearance features) to dis-
criminate an object. As a result, important semantic features are
ignored. Instead, MASNet adopts a Siamese network to align the
two outputs estimated from the original and augmented images,
encouraging the network to learn the shared semantic features.

2) Effectiveness of Cross-Level Fusion: Since the proposed
network is based on a multiscale fusion structure, it is necessary
to conduct an ablation study to understand how each scale
features affect the performance. We have tried the following
two variations over the original MASNet.

a) E5: Using the features from E5.
b) E5+E4+E3: Using the features from E3, E4, and E5.
We report the test results in Table VIII. From the table, we can

observe that the combination of low-level and high-level features
(i.e., MASNet) can achieve better performance. The reason lies
in that high-level and low-level features have their respective
role in characterizing valuable information. For example, the
former is more related to semantic features, while the latter can
capture rich edge and location-related information.

3) Effectiveness of Feature Enhancement: In MASNet, we
use the RFB to enhance features and help establish long-range
semantic dependencies. In Table IX, we list the objective results
to show the role of RFB. Note that, for the baseline method, we
use 1× 1 convolutional layers to replace the RFB to meet the
specific requirement of channel numbers. From Table IX, we can
observe that without RFB, the segmentation performance will
drop to a certain degree. This confirms that the RFB is beneficial
for the feature learning of the MAS task.

Fig. 10. Failure cases of the proposed method.

G. Limitations and Discussions

In this article, we propose MASNet for MAS. Although
our method achieves promising results compared with existing
methods, it still has some limitations.

1) Owing to the complex and diverse underwater environ-
ments, MASNet fails to handle some specific cases. We
show two failure cases in Fig. 10. One can observe that
it is difficult to segment objects with high camouflage
attributes or animals in poor-quality images with complex
shapes. Thus, tremendous efforts are highly demanded,
and there exists a large room to promote the accuracy and
robustness of MAS.

2) Existing object segmentation methods typically capture
rich representations from deep convolutional neural net-
works (e.g., ResNet [29]) pretrained on large-scale data
sets (e.g., ImageNet [63]). Despite the effectiveness, their
application is constrained by the model size, computing
power, and storage memory, especially for underwater
scenarios. Therefore, lightweight models are required to
deal with the limited computing and storage resource in
specific underwater mobile devices.

V. CONCLUSION

In this article, we developed a new learning-based method for
MAS considering both the image degradation and object cam-
ouflage properties. We proposed to combine data augmentation
techniques with the Siamese network for the better segmentation
of camouflaged and degraded marine objects. For each branch
of the Siamese network, we elaborately designed a fusion-based
structure to predict a high-quality segmentation map. In addition,
we constructed a new data set as a supplement to existing
benchmarks. The proposed data set can be used for training and
evaluating MAS models. Experimental results on two MAS data
sets showed that the proposed method outperforms state-of-the-
art approaches significantly. In the future, we plan to develop
lightweight models for accurate and real-time MAS.
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