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ABSTRACT
Pan-sharpening aims to spatially enhance the low-resolution mul-
tispectral image (LRMS) by transferring high-frequency details
from a panchromatic image (PAN) while preserving the spectral
characteristics of LRMS. Previous arts mainly focus on how to
learn a high-resolution multispectral image (HRMS) on the i.i.d.
assumption. However, the distribution of training and testing data
often encounters significant shifts in different satellites. To this end,
this paper proposes a generalizable pan-sharpening network via
domain-irrelevant feature learning. On the one hand, a structural
preservation module (STP) is designed to fuse high-frequency in-
formation of PAN and LRMS. Our STP is performed on the gradient
domain because it consists of structure and texture details that can
generalize well on different satellites. On the other hand, to avoid
spectral distortion while promoting the generalization ability, a
spectral preservation module (SPP) is developed. The key design
of SPP is to learn a phase fusion network of PAN and LRMS. The
amplitude of LRMS, which contains ‘satellite style’ information is
directly injected in different fusion stages. Extensive experiments
have demonstrated the effectiveness of our method against state-of-
the-art methods in both single-satellite and cross-satellite scenarios.
Code is available at: https://github.com/LYL1015/DIRFL.
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Figure 1: The generalization problem of pan-sharpening.
Deep learning models are trained on the WV3 dataset and
tested on both WV3 and GF2 datasets. The proposed method
consistently achieves visually pleasing results. In contrast,
existing methods (i.e., LAGConv [27] and SFIIN [61]) are
sensitive to data distribution and show poor generalization
performance.
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1 INTRODUCTION
High-resolution multispectral images (HRMS) can be beneficial in a
broad range of remote sensing tasks such as military systems, envi-
ronmental monitoring, mapping services, and scene interpretation.
Nevertheless, due to technological and physical limitations, satel-
lites will often only capture a high-resolution panchromatic image
(PAN) and a low-resolution multispectral image (LRMS). To obtain
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HRMS, various pan-sharpening techniques have been developed to
fuse LRMS and PAN [48, 57, 62, 63].

Traditional pan-sharpening methods adopt component substi-
tution, multi-resolution analysis, and variational approaches to
transform spatial details from PAN to LRMS. Due to the inacces-
sibility of sensor characteristics and improper modeling of prior
knowledge, traditional methods commonly fail to restore precise
spatial and spectral details of HRMS. Recently, deep convolutional
neural networks have been introduced for pan-sharpening and have
shown significant progress. The pioneering one refers to PNN [33],
which adapts a three-layer convolution operation to directly learn
a mapping from PAN and LRMS to HRMS. Due to the excellent abil-
ity in learning proper image features, PNN achieved a significant
improvement compared with classical methods. Subsequently, the
performance of pan-sharpening was further promoted by designing
different network architectures.

Although deep convolutional neural networks can learn power-
ful representations from large quantities of annotated data, they
cannot always generalize well when the input distribution changes.
Unfortunately, most existing pan-sharpening networks train and
evaluate the model on the same satellite dataset. These solutions
are susceptible to the domain shift issue because the distribution
of LRMS can be significantly different. For verification, we show
an example of the domain shift issue in Figure 1, where all meth-
ods are trained on WV3 and evaluated on both WV3 and GF2. As
can be seen, state-of-the-art (SOTA) approaches suffer from sharp
performance degradation when their models are directly applied
to new satellite data. Therefore, the generalization issue of deep
learning-based pan-sharpening methods poses challenges to practi-
cal applications.

In this paper, we propose a novel pan-sharpening framework via
learning domain-irrelevant representations to promote the general-
ization capability of the network. The proposed model consists of
three distinct designs, i.e., a structural preservation module (STP), a
spectral preservation module (SPP), and a complementary informa-
tion fusion module (CIF). Specifically, STP aims at learning spatial
structure information. STP is performed in the gradient domain
to fuse the gradient features and enforce structural consistency
between PAN and MS. Since gradient features are naturally con-
sistent across different domains, STP is insensitive to the domain
shift. To preserve spectral information, we propose SPP, which first
decouples the phase and amplitude of PAN and MS in the frequency
domain. Then, phase features are fused to further enhance the struc-
tural consistency. Note that SPP does not use the amplitude feature
of PAN because it is uninformative for pan-sharpening. The ampli-
tude of MS contains domain-specific features, which are directly
injected into the network in different fusion stages. The final pre-
diction of our method is obtained via a simple fusion module (i.e.,
CIF), which integrates the complementary information of structure
and spectra. Note that CIF does not learn any amplitude features of
MS. As a result, the proposed method can avoid learning domain-
specific features and thus significantly improve the generalization
ability.

In summary, the contributions of this work are as follows:

• We propose a novel pan-sharpening framework that im-
proves the generalization capability of CNN-based fusion

networks. To the best of our knowledge, this is the first
attempt to improve the generalization capability for Pan-
sharpening.

• To learn generalized features, we use gradient and phase
features to enforce structural consistency. Besides, the ampli-
tude features of LRMS are directly injected into the network
in different fusion stages to avoid learning domain-specific
features.

• Extensive experiments on different satellite datasets demon-
strate that the proposed method achieves SOTA performance
in both single-satellite and cross-satellite scenarios.

2 RELATEDWORK
2.1 Classic pan-sharpening methods
Classic pan-sharpeningmethods can be roughly classified into three
categories, including component substitution (CS) [5, 10, 35], multi-
resolution analysis (MRA) [12, 36, 38], and variational optimization
(VO) [11, 14]. PCA [29], IHS [5] and Brovey [19] are three typical
CS methods. These methods improved the spatial resolution by
projecting the MS image into a new space and replacing the spatial
information with the PAN image. To solve the spectral distortion
problems, MRA used multi-resolution decomposition methods such
as laplacian pyramid [37] and decimated wavelet transform [32] to
extract the spatial information of the PAN image, and then inject
it into the up-sampled MS images. VO methods [2, 25] designed
specific optimization functions based on various prior assumptions
for pan-sharpening. Overall, classic pan-sharpening approaches
rely on hand-crafted features. These methods often generate spatial
and spectral distortions due to the limited representation ability of
the applied priors.

2.2 Deep learning based methods
With the highly nonlinear mapping capability of deep convolutional
neural networks (CNN), numerous researchers have explored the
use of this technology for image restoration [7–9, 16, 17, 30, 31,
51–53], hyperspectral images [4, 15, 23, 24] and remote sensing
images [47, 56, 58, 59]. Recently, the paradigm of pan-sharpening
has gradually shifted to data-driven approaches based on deep
learning. For example, Masi et al. [33] were the first to apply CNN
to address the problem of pan-sharpening and achieved a significant
improvement by comparison with the classical methods. Yang et
al. [49] adopted the resblock [20] and trained the network in the
high-frequency domain. The LRMS image is directly added to the
network output. This method can generalize to new satellites to a
certain degree. However, the spectral knowledge of LRMS is not
exploited. Yuan et al. [54] added the multi-scale module into the
fundamental CNN architecture, and Cai et al.[3] also refers to the
design idea of the single-image super-resolution network SRCNN
[13].Wu et al. [43] deployedmany parallel branches to continuously
integrate features with varied sizes into the network’s backbone.
Besides, somemodel-drivenmethods with physical constraints have
been presented. Xie et al. [44] and Xu et al. [46] first used prior
knowledge to formulate optimization problems for pan-sharpening
task. Then the authors replaced the steps in the algorithm with
deep neural networks. Zhou et al. [60, 61] trained a pan-sharpening
network in both spatial and frequency domains.
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Figure 2: The overall framework of our proposed pan-sharpening framework. It consists of three distinct designs: 1) structural
preservation mudule (STP), 2) spectral preservation module (SPP), and 3) complementary information fusion module (CIF).
Specifically, STP is performed in the gradient domain to fuse the gradient features and enforce structural consistency between
PAN and LRMS. To preserve spectral information, we propose SPP, which first decouples the phase and amplitude of PAN
and LRMS in the Fourier domain. Then, phase features are fused to further enhance structural consistency. Meanwhile, the
amplitude of LRMS contains domain-specific features, which is directly injected into the network at different stages. Finally,
CIF integrates the complementary of structure and spectra to output the prediction.

3 METHODS
The goal of pan-sharpening is to combine the complementary in-
formation of PAN (𝑃 ∈ 𝑅𝐻×𝑊 ×1) and LRMS (𝐿𝑀 ∈ 𝑅𝐻/𝑟×𝑊 /𝑟×𝐶 )
image to generate HRMS (𝐻𝑀 ∈ 𝑅𝐻×𝑊 ×𝐶 ) image, where 𝐻 and
𝑊 are the height and width of the image,𝐶 refers to spectral bands.
The ratio of spatial resolution between PAN and the corresponding
LRMS is equal to 4, i.e., 𝑟 = 4. The overall framework of our pro-
posed method is presented in Figure 2. It consists of three distinct
designs: 1) structural preservation module, 2) spectral preservation
module, and 3) complementary information fusion module.

3.1 Motivation
Deep learning-based approaches have achieved notable progress in
pan-sharpening. However, those solutions commonly suffer from
a lack of generalization ability. As shown in Figure 1, deep neural
networks trained on WV3 perform poorly when evaluated on other
satellites. We argue that the poor generalization performance of
pan-sharpening networks may result from the training method,
which leads to the model overfitting the ‘styles information’ in
the LRMS image. Therefore, how to address the domain-specific
features in LRMS is the key to generalizable pan-sharpening.

In Figure 3, to enforce structural consistency and promote gen-
eralization performance, PanNet is trained in the high-frequency
domain, which is insensitive to the domain shift. Inspired by it, the
gradient features of PAN and LRMS are utilized in our method to
enhance structural consistency and learn domain-irrelevant fea-
tures. For spectra and domain-specific features preservation, Pan-
Net propagates the LRMS image to the network output. Never-
theless, directly mapping of the spectral information contained in
the LRMS may lead to inaccurate predictions. This is because the
spectral knowledge of LRMS is not well exploited and used. As
the domain-specific features can be disentangled in the frequency
domain[6, 41, 45, 50], which motivates us to design frequency-based
feature integration networks for generalizable pan-sharpening. As
illustrated in Figure 3, the domain-irrelevant knowledge (i.e., the
phase) of LRMS is sufficiently leveraged in our method to enhance
the structural consistency. Meanwhile, the amplitude of LRMS is di-
rectly injected in different fusion stages to ensure the generalization
ability and avoid spectral distortion.

3.2 Structural Preservation
Since gradients contain rich image structure details and they are
inherently consistent across domains, we perform the structural
preservation on the gradient domain. Specifically, the gradients of
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Figure 3: The flowchart of PanNet[49] and our method where
DNN represents the deep neural networks. Note that the two
fusion modules in our method are quite different.

PAN and LRMS are first calculated by:
𝑃𝑥 , 𝑃𝑦 = ∇(𝑃)

𝑀𝑥 , 𝑀𝑦 = ∇ (𝐿𝑀 ↑) (1)

where 𝑃 refers to the PAN image, and 𝐿𝑀 ↑ denotes the upsampled
version of LRMS. 𝐿𝑀 ↑ and 𝑃 have a same spatial resolution. ∇
indicates the gradient operation, 𝑃𝑥 and 𝑃𝑦 represent the horizontal
and vertical gradient images of PAN, respectively. Similarly, 𝑀𝑥

and 𝑀𝑦 represent the horizontal and vertical gradient images of
upsampled LRMS, respectively.

To facilitate the interaction between gradient features, a high-
order information interaction module (HOFI) is employed (shown
in Figure 4). Concretely, we first use a linear projection layer 𝜑in (·)
to obtain a set of projected feature components 𝐾0 and {𝑄𝑘 }𝑛−1𝑘=0 :[

𝐾
𝐻×𝑊 ×𝐶0
0 , 𝑄

𝐻×𝑊 ×𝐶0
0 , ..., 𝑄

𝐻×𝑊 ×𝐶𝑛−1
𝑛−1

]
= 𝜑in (𝐹𝐻 ) (2)

We set the interaction orders (i.e., the 𝑛 in 𝑔𝑛Conv [34]) as 3
by default, 𝐹𝐻 refers to the joint shallow gradient features of PAN
and upsampled LRMS, 𝜑in (𝐹𝐻 ) ∈ R𝐻×𝑊 ×(𝐶0+

∑
0≤𝑘≤𝑛−1𝐶𝑘 ) . The

channel dimension in each order as𝐶𝑘 = 𝐶
2𝑛−𝑘−1 , 0 ≤ 𝑘 ≤ 𝑛 − 1. We

then perform the gated convolution recursively by:

𝐾𝑘+1 =

{
𝑓𝑘 (𝑄𝑘 ) ⊙ 𝐾𝑘 , 𝑘 = 0
𝑓𝑘 (𝑄𝑘 ) ⊙ 𝑔𝑘 (𝐾𝑘 ) , 1 ⩽ 𝑘 ⩽ 𝑛 − 1

(3)

The coarse fused gradient component 𝐾𝑘+1 is derived through
the element-wise multiplication of 𝑓𝑘 (𝑄𝑘 ) and 𝑔𝑘 (𝐾𝑘 ). Where 𝑓𝑘
are a set of depth-wise convolutions (ie., 7 × 7 convolution) for
deep feature extraction. {𝑔𝑘 } are a set of 1 × 1 convolutions used
to match the dimension in different orders.

Finally, we feed the last recursion step fused gradient component
𝐾𝑛 to the projection layer 𝜑out (·) to obtain the result of high-order
interactions. And we then model the relationship between feature
channels by channel attention 𝐶𝐴 (·) to obtain a multispectral im-
age 𝐻𝐺 ∈ R𝐻×𝑊 ×𝐶 that contains structural information:

𝐻𝐺 = 𝐶𝐴 (𝜑out (𝐾𝑛)) (4)

Figure 4: The architecture of our proposed high-order in-
formation interaction module (HOFI). We also provide the
detailed implementation of 𝑔𝑛Conv [34] with the interaction
order 𝑛 = 3 (below).

3.3 Spectral Preservation
In Figure 5, we perform inverse DFT to obtain phase-only recon-
struction images in the spatial domain. As observed, The phase
of PAN is more similar to the phase of GT than that of LRMS and
exhibits richer structural information. Our results reveal that the
phase of LRMS needs to be enhanced during the training phase. As
CNN is not sensitive to changes in the phase domain [18], we explic-
itly fuse the phase features of PAN and LRMS to further promote
structural consistency. Meanwhile, the amplitude features of LRMS
are directly injected into the network in different fusion stages for
spectral preservation. Formally, we first decouple the phase and
amplitude of PAN (𝑃 ) and upsampled LRMS (𝐿𝑀 ↑) in the Fourier
domain. The corresponding Fourier transform is expressed as:

A (𝑃) ,P (𝑃) = ℱ (𝑃)
A (𝐿𝑀 ↑) ,P (𝐿𝑀 ↑) = ℱ (𝐿𝑀 ↑) (5)

whereA (·) andP (·) indicate the amplitude and phase respectively.
Subsequently, we apply inverse DFTℱ

−1 to the phase spectra of
PAN (𝑃 ) and upsample LRMS (𝐿𝑀 ↑) to obtain the phase-only
reconstruction image in the spatial domian:

𝑃𝑢 = ℱ
−1 (1,P (𝑃))

𝐿𝑢 = ℱ
−1 (1,P (𝐿𝑀 ↑)) (6)

where 𝑃𝑢 and 𝐿𝑢 represent the phase-only reconstruction image of
the PAN and the upsampled LRMS, respectively.

After achieving the phase-only reconstruction images 𝑃𝑢 and
𝐿𝑢 , we perform the high-order information interaction by the HOIF
module between them (similar to Eq.2-4). Aiming to obtain a fused
phase-only reconstruction image 𝐻𝑢𝑠 contains enhanced structural
information:

𝐻𝑢𝑠 = HOFI(𝐹𝑢 ) ∈ R𝐻×𝑊 ×𝐶 (7)

where 𝐹𝑢 denotes the joint shallow features of 𝑃𝑢 and 𝐿𝑢 .
After obtaining 𝐻𝑢𝑠 , we conduct the first injection of amplitude

from LRMS. To be specific, we perform an inverse DFT to the phase
of 𝐻𝑢𝑠 and the amplitude of upsampled LRMS (𝐿𝑀 ↑):

A (𝐻𝑢𝑠 ) ,P (𝐻𝑢𝑠 ) = ℱ (𝐻𝑢𝑠 )
𝐻𝑆 = ℱ

−1 (A (𝐿𝑀 ↑) ,P (𝐻𝑢𝑠 ))
(8)

To fuse cross-modal complementary features of 𝐻𝐺 and 𝐻𝑆 ,
we propose a feature fusion module, i.e., 𝐷𝐹𝑀 (·), whcih can be
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Figure 5: We applied an inverse DFT to the phase spectra of
PAN image, GT image, and MS image to obtain the phase-
only reconstruction image in the spatial domain. That means
the amplitude of PAN, MS, and GT is set to 1.

expressed as:
𝐻𝑓 = 𝐷𝐹𝑀 (𝐻𝐺 , 𝐻𝑆 ) (9)

𝐷𝐹𝑀 is based on the residual channel attention mechanism and
its detailed structure is presented in Figure 6. Notably, to avoid the
network learning domain-specific features, we merely estimate the
phase of the fused image 𝐻𝑓 and discard the amplitude:

A
(
𝐻𝑓

)
,P

(
𝐻𝑓

)
= ℱ

(
𝐻𝑓

)
(10)

Finally, we inject the amplitude of LRMS again via inverse DFT.
Moreover, a residual learning mechanism is adopted by adding 𝐻𝐺

to the final prediction 𝐻𝑀 :

𝐻𝑀 = ℱ
−1

(
A (𝐿𝑀 ↑) ,P

(
𝐻𝑓

))
+ 𝐻𝐺 (11)

3.4 Loss Function
To generate high-quality results, we propose a joint structural-
spectral loss to train the network. For structural consistency, we
adopt the 𝐿1 loss:

L1 =
𝐻𝑀 − 𝐻𝑔𝑡


1 (12)

where 𝐻𝑀 and 𝐻𝑔𝑡 denote the network output and the correspond-
ing ground truth, respectively. To further supervise the structural
consistency, we employ the DFT to convert𝐻𝑀 and𝐻𝑔𝑡 into Fourier
space, where the 𝐿1-norms of phase difference are calculated:

L𝑝 =
P (𝐻𝑀) − P

(
𝐻𝑔𝑡

)
1 (13)

Simultaneously, we employ a spectral loss function to enhance
the spectral information consistency among𝐻𝑀 and𝐻𝑔𝑡 . The spec-
tral loss function is defined as follows:

L𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

arc cos

(
𝐻𝑀 · 𝐻𝑔𝑡

∥𝐻𝑀 ∥2
𝐻𝑔𝑡


2

)
(14)

where 𝑁 denotes the number of pixels in each multispectral im-
age band. Finally, the full objective function for our method is a
weighted sum of all sub-loss terms:

L = L1 + _1L𝑝 + _2L𝑠 (15)

Table 1: The Composition of each satellite image dataset.

Satelite WorldView-III WorldView-II GaoFen2

Training number 2150 - -
Testing number 200 840 2912

Figure 6: The architecture of feature fusion module (DFM).

where _1 and _2 denote the weights for balancing the three terms.
_1, _2 are empirically set to 0.1 and 0.2 in all experiments.

4 EXPERIMENTS
4.1 Datasets
In order to show the effectiveness of the proposed model, we
conduct experiments over the widely-used datasets including
WorldView-II (WV2), GaoFen2 (GF2) and WorldView-III (WV3).
As the paired training samples are not available, we construct the
training datasets using the Wald protocol [40] to generate paired
images. To be specific, given an origin MS image 𝐻𝑀 ∈ 𝑅𝐻×𝑊 ×𝐶

and its corresponding PAN image 𝑃 ∈ 𝑅𝑟𝐻×𝑟𝑊 ×𝐶 , both of them are
downsampled with ratio r to obtain image pairs 𝐿𝑀 ∈ 𝑅

𝐻
𝑟
×𝑊

𝑟
×𝐶

and 𝑝 ∈ 𝑅𝐻×𝑊 ×𝐶 . 𝐿𝑀 and 𝑝 are treated as inputs, while𝐻𝑀 serves
as the ground truth. Furthermore, the PAN images are cropped into
patches with the size of 128 × 128 × 1, while the MS images are
cropped into patches with the size of 32 × 32 × 4.

For the WV3 satellite dataset, approximately 90% of the data are
allocated for training and 10% for validation, whereas the remaining
two satellite datasets are solely utilized for validation. The detailed
composition of each dataset is reported in Table 1.

4.2 Implementation Details
All experiments are conducted on a single NVIDIA GeForce GTX
2080Ti GPU, and the PyTorch framework is used to construct our
networks. During the training phase, we employ an ADAM opti-
mizer with 𝛽1 = 0.9, 𝛽2 = 0.999 to update the network parameters
for 1000 epochs with a batch size of 4. The learning rate is initial-
ized with 8 × 10−4. In parallel, a StepLR learning rate adjustment
strategy is employed to reduce the learning rate by half after every
150 iterations.

4.3 Evaluation Metrics
We evaluate the algorithm performance using the following four
widely used image quality assessment metrics: peak signal-to-noise
ratio (PSNR) [22], structural similarity index (SSIM) [42], relative
dimensionless global error in synthesis (ERGAS) [39], spectral angle
mapper (SAM) [55]. The first three metrics measure the spatial
distortion and the fourth one measures the spectral distortion. An
image is better if its PSNR and SSIM are higher, and SAM and
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Table 2: Quantitative comparison. Highlighted in red and underlined respectively indicate the first and second bset results.

Worldview III Worldview II GaoFen2
Method

PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ #Param #GFLOPs

PNN [33] 29.9418 0.9121 0.0824 3.3206 26.0051 0.8212 0.1461 6.5339 24.1737 0.7709 0.1556 4.4998 1.129M 0.068G
PanNet [49] 29.6840 0.9072 0.0851 3.4263 30.3104 0.8369 0.0707 3.3140 30.9604 0.7701 0.0502 3.0355 1.127M 0.069G

MSDCNN [54] 30.3038 0.9184 0.0782 3.1884 28.0123 0.8076 0.1025 5.0103 27.9701 0.7621 0.0736 4.2616 2.390M 3.916G
DiCNN [21] 29.7445 0.9090 0.0830 3.3902 26.1971 0.8176 0.1237 6.3263 28.4187 0.7869 0.0635 3.4095 0.412M 0.689G
SRPPNN [3] 30.4346 0.9202 0.0770 3.1553 28.2124 0.8183 0.1005 4.9073 28.5698 0.7622 0.0817 3.3878 17.114M 21.106G
GPPNN [46] 30.1785 0.9175 0.0776 3.2593 26.1912 0.8146 0.1069 6.0099 25.0855 0.6960 0.1100 5.2558 1.198M 1.397G
BAM [26] 30.3845 0.9188 0.0773 3.1670 27.4929 0.8127 0.1086 5.3810 27.9112 0.7237 0.0656 3.9072 0.971M 1.552G

LAGConv [27] 30.2933 0.9147 0.0782 3.2050 30.1302 0.8365 0.0761 3.8513 24.0323 0.7262 0.1404 7.9625 0.540M 0.511G
SFIIN [61] 30.5439 0.9228 0.0745 3.1097 29.5121 0.8360 0.0693 4.0178 28.2132 0.7029 0.0646 3.6545 0.921M 1.304G

Ours 30.4397 0.9207 0.0768 3.1478 31.1664 0.8464 0.0643 3.0163 32.8621 0.7874 0.0500 3.0117 1.091M 1.543G

Table 3: Quantitative comparison. Highlighted in red and underlined respectively indicate the first and second bset results.
WorldView-III WorldView-II GaoFen2Method

𝐷_ ↓ 𝐷𝑆 ↓ QNR ↑ 𝐷_ ↓ 𝐷𝑆 ↓ QNR ↑ 𝐷_ ↓ 𝐷𝑆 ↓ QNR ↑
PNN [33] 0.0460 0.0933 0.8654 0.1186 0.1228 0.7741 0.2778 0.1487 0.6153

PanNet [49] 0.0474 0.0942 0.8634 0.1092 0.1227 0.7826 0.1517 0.1253 0.7412
MSDCNN [54] 0.0432 0.0878 0.8732 0.1329 0.1228 0.7621 0.2916 0.1270 0.6191
DiCNN [21] 0.0469 0.0910 0.8666 0.1098 0.1156 0.7880 0.2564 0.1669 0.6204
SRPPNN [3] 0.0414 0.0909 0.8719 0.1371 0.1273 0.7543 0.2390 0.1092 0.6779
GPPNN [46] 0.0438 0.0936 0.8671 0.1193 0.1196 0.7764 0.2343 0.1391 0.6594
BAM [26] 0.0469 0.0910 0.8666 0.1314 0.1207 0.7649 0.3320 0.1292 0.5823

LAGConv [27] 0.0444 0.0886 0.8711 0.1248 0.1162 0.7743 0.2574 0.1864 0.6045
SFIIN [61] 0.0413 0.0876 0.8722 0.1209 0.1196 0.7751 0.3076 0.1201 0.6097

Ours 0.0420 0.0877 0.8716 0.0995 0.1195 0.7937 0.1798 0.0774 0.7562

ERGAS are lower. Furthermore, due to the lack of ground-truth
MS images, we also quantify the model performance with three
no-reference image quality assessment measures, i.e., the spectral
distortion index 𝐷_ [28], the spatial distortion index 𝐷𝑆 and the
quality with (QNR) [1].

4.4 Comparison with state-of-the-art methods
To prove the superior generalization capability of our approach, we
compare its performance with several representative deep learning-
based pan-sharpening methods: including PNN [33], PanNet [49],
MSDCNN [54], DiCNN [21], SRPPNN [3], GPPNN [46], BAM [26],
LAGConv [27], and SFIIN [61].

We’ve motivated the proposed method as being more robust to
differences across satellites because it focuses on gradient and phase
features for structural consistency, and the amplitude features of
upsampled LRMS are directly injected into the network for spectral
preservation. This strategy can help the network learn domain-
irrelevant knowledge, and so networks trained on one satellite can
generalize better to new satellites. To empirically show this, we
train all comparison methods on WorldView-III dataset, but test
them on multiple types of satallite datasets (e.g., WorldView-III,
WorldView-II and GaoFen2).

Quantitative Comparison. Table 2 and Table 3 summarize the
average assessment metrics for three datasets, with the best results
highlighted in red. The results show that our model outperforms
all the other models in terms of generalization performance on the
WorldView-II and GaoFen2 datasets. Compared to the second-best

results, our method improves PSNR by 0.86dB and 1.90dB across
the two datasets, respectively. Furthermore, our method also leads
all algorithms by a large margin in other metrics in addition to
PSNR. As the domain shift increases, our model exhibits a slower
performance degradation and thus demonstrates better generaliza-
tion. In contrast, other models suffer from significant performance
drops when dealing with more severe domain discrepancies. At the
same time, our approach achieves comparable performance with
state-of-the-art methods on the WorldView-III dataset.

Visual Comparison. Additionally, we also provide the visual
comparison with other advanced algorithms on WorldView-III,
WorldView-II and GaoFen2 datasets, respectively, as shown in Fig-
ure 7, Figure 8 and Figure 9. The last row of the figure shows
the mean squared error (MSE) between the ground truth and the
pan-sharpened images. In Figures 8 and 9, we can clearly observe
that our method achieves the best visually appealing results, and
the fused high-quality pan-sharpened image is closer to ground
truth even though it is trained only on the WorldView-III dataset.
Specifically, upon amplifying local regions, we observe that our pro-
posed method preserves spectral information (less color difference
in smooth regions) and achieves better spatial resolution (clearer
structures around edge regions) compared to other methods. It’s
worth mentioning that our proposed strategy is more accurate than
other comparison methods in terms of MSE residues, thus further
demonstrating the ability of our proposed method to generalize
effectively across multiple satellites. These results confirm and sup-
port our motivation to learn domain-irrelevant representations to
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Figure 7: Visual comparison of all methods on WorldView-III.

Figure 8: Visual comparison of all methods on WorldView-II.

promote the generalization capability of the network. In contrast,
existing models tend to overfit the training satellite data distribu-
tion and fail when facing unseen satellites. More quantitative and
qualitative results can be found in the supplementary material.

4.5 Comparison Over Full-Resolution Scenes
To compare the generalization of models in full-resolution scenes,
we apply a pre-trained model built on WorldView-III data to an
additional real-world full-resolution GaoFen2 dataset for evalua-
tion. Table 4 provides an overview of the experimental findings
for all approaches. From Table 4, we can observe that our devised
technique performs almost at the top of all the indices, which sug-
gests that it has superior generalization capacity than other deep
learning-based methods. Please refer to the supplementary material
to see visual results.

4.6 Ablation experiments
In this subsection, several ablation experiments are performed to
verify the effectiveness of the proposed key insights, including: a)
the phase and amplitude of PAN and LRMS are disentangled in the
frequency domain, which can help network learn domain-irrelevant
features and improve the model generalization capability; b) the
gradient features are insensitive to the domain shift, which can
also promote the model generalization ability. We train our model
on the WorldView-III dataset, and evaluate the performance on
the GaoFen2 dataset. The commonly used IQA measures, such as
PSNR, SSIM, SAM, ERGAS index, 𝐷_ , 𝐷𝑆 , and QNR, are utilized to
evaluate all of the experimental data.

(I) Effect of phase-amplitude decoupling in the frequency
domain: In the spectral preservation phase, compared to previous
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Table 4: Evaluation on the real-world full-resolution scenes from GaoFen2. Highlighted in red indicates the bset results.
Metrics PNN [33] PanNet [49] MSDCNN [54] DiCNN [21] SRPPNN [3] GPPNN [46] BAM [26] LAGConv [27] SFIIN [61] Ours

𝐷_↓ 0.2443 0.1959 0.1825 0.1643 0.1601 0.2454 0.262 0.2455 0.1401 0.0696
𝐷𝑆↓ 0.1419 0.2743 0.3226 0.3595 0.3246 0.3252 0.2983 0.2969 0.3258 0.2456
QNR↑ 0.5090 0.6907 0.5563 0.5379 0.5700 0.5117 0.5200 0.5317 0.5825 0.7025

Table 5: Ablation studies comparison on GaoFen2. Highlighted in red indicates the bset results.
GaoFen2Ablation PSNR ↑ SSIM ↑ SAM ↓ ERGAS ↓ 𝐷_ ↓ 𝐷𝑆 ↓ QNR ↑

(I) 26.6153 0.6887 0.0677 4.2745 0.3379 0.1189 0.5838
(II) 28.6974 0.7325 0.0809 3.7741 0.2457 0.1143 0.6684
Ours 32.8621 0.7874 0.0500 3.0117 0.1798 0.0774 0.7562

Figure 9: Visual comparison of all methods on Gaofen2.

works, we aim to enhance model generalization ability by decou-
pling the phase and amplitude of PAN and LRMS in the frequency
domain. To demonstrate its effectiveness, we compare it to a vari-
ant model that directly fuses MS and PAN images in the spatial
domain to preserve spectral information. As shown in Table 5, due
to training-testing inconsistency, the quantitative performance of
variant model degrades significantly, which nearly loses its gener-
alization ability. This can be attributed to the direct fusion of LRMS
and PAN images in the spatial domain, which inevitably guides the
network parameters to learn domain-specific features contained in
the amplitude of LRMS, thus degrading the generalization perfor-
mance.

(II) The gradient features are insensitive to the domain
shift: In the structural preservation phase, the gradient features
of PAN and MS are utilized to enforce the structural consistency
and learn the domain-irrelevant features. To assess its impact, we
conduct an experiment that directly fuse the PAN and upsampled
LRMS in the spatial domain instead of the gradient domain for
structural consistency. Observing the results from Table 5, it can
be clearly figured out that the variant model generalization per-
formance has obtained considerable degradation in terms of all
the IQAs when removing the gradient domain. It is because the

gradient features are naturally consistent across different domains
and are insensitive to the domain shift.

5 CONCLUSION
In this paper, we propose a generalizable pan-sharpening frame-
work. Two core designs are devised to equip the network, i.e., a
structural preservation module (STP) and a spectral preservation
module (SPP). Concretely, STP is designed to fuse gradient informa-
tion and enforce structural consistency between PAN and LRMS.
SPP is presented to learn a phase fusion network of PAN and LRMS.
The amplitude of LRMS that contains domain-specific features is
directly injected into the network, which benefits the generaliza-
tion capability of the network. Extensive experiments demonstrate
that our proposed framework achieves better generalization per-
formance than existing state-of-the-art pan-sharpening methods
over multiple satellite datasets.
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