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Abstract. Infrared and visible image fusion (IVIF) is a widely used
technique in instrument-related fields. It aims at extracting contrast
information from the infrared image and texture details from the vis-
ible image and combining these two kinds of information into a single
image. Most auto-encoder-based methods train the network on natural
images, such as MS-COCO, and test the model on IVIF datasets. This
kind of method suffers from domain shift issues and cannot generalize
well in real-world scenarios. To this end, we propose a self-supervised
test-time training (TTT) approach to facilitate learning a better fusion
result. Specifically, a new self-supervised loss is developed to evaluate
the quality of the fusion result. This loss function directs the network
to improve the fusion quality by optimizing model parameters with a
small number of iterations in the test time. Besides, instead of manually
designing fusion strategies, we leverage a fusion adapter to automati-
cally learn fusion rules. Experimental comparisons on two public IVIF
datasets validate that the proposed method outperforms existing meth-
ods subjectively and objectively.

Keywords: Infrared image · Image fusion · Domain shift · Test-time
training · Deep learning

1 Introduction

Infrared images (IR) contain thermal radiation information, and visible images
(VI) have rich texture details. Infrared and visible image fusion (IVIF) aims to
combine meaningful and complete information from images captured by visible
and infrared sensors. As a result, the generated image contains richer information
and is more favorable for subsequent computer vision tasks. IVIF techniques have
been widely applied in object tracking and detection, urban security, and vehicle
navigation [2,32].

In the past decades, many methods have been developed to fuse IR-VI images.
Typical traditional methods are multi-scale transform-based (MST) methods
and representation learning-based (RL) approaches. MST methods [25] use a
specific transformation model to extract multi-scale features and manually design
rules to fuse images. RL approaches include sparse representation (SR) [29], joint
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Fig. 1. (a) Visualization of image features using t-SNE [18]. Image features are gener-
ated by ResNet18 pre-trained on ImageNet [3]. These features are clustered in different
centers, indicating an apparent discrepancy between the distribution of MS-COCO [11]
and IVIF datasets. (b) The examples in MS-COCO. (c) and (d) are examples of IR
and VI images in the TNO [24] dataset and VIFB [33] dataset, respectively.

sparse representation (JSR) [31], low-rank representation (LRR) [14], and latent
low-rank representation (LatLRR) [13]. Similar to MST methods, the fusion rules
in RL approaches often require manual design, which may degrade the fusion
performance because source images are complex and diverse.

Recently, various deep learning-based solutions for IVIF have been pre-
sented, such as auto-encoder-based (AE) methods [6–8,26], convolutional neu-
ral network-based (CNN) methods [10], generative adversarial network-based
(GAN) approaches [5], and transformer-based [23] solutions. Deep learning-based
methods leverage the powerful nonlinear fitting ability of deep neural networks to
make the fused images have the desired distribution. As a result, deep learning-
based methods provide promising results against traditional approaches. How-
ever, deep learning-based approaches still struggle with domain shift problems,
especially for AE-based solutions that train the fusion network on MS-COCO
and test the model on IR-VI images. The MS-COCO and IR-VI datasets have
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different characters, and the domain distribution difference between them is sig-
nificant. For demonstration, we visualize the domain shift in Fig. 1.

Test-time training (TTT) techniques [22] are proposed to deal with the
domain shift problem and promote the model performance for each test instance.
TTT updates the network parameters before predicting. The optimization is
based on specific self-supervised loss or tasks. For example, Liu et al. [15] pro-
posed a TTT strategy that employs an auxiliary network to help the dehazing
model better adapt to the domain of interest. In [4], masked auto-encoders were
explored to address the one-shot learning problem, and this method improved
generalization performance in various vision benchmarks.

In this paper, we propose a self-supervised TTT method that updates model
parameters during the testing phase to improve the AE-based methods for IVIF.
Concretely, we propose a new self-supervised loss based on a mutual attention
mechanism to guide the network optimization in the test time. Moreover, we also
propose a fusion adapter to automatically learn fusion rules instead of manually
designing fusion strategies. Our contributions can be summarized as follows:

(1) We apply TTT strategies to improve the generalization performance of AE-
based IVIF methods. A mutual attention mechanism loss is designed for
self-supervised optimization.

(2) We propose a fusion adapter to learn and fuse features from different source
images adaptively.

(3) Extensive experiments on two public IVIF datasets demonstrate that with
a small number of iterations, the proposed method outperforms the state-
of-the-art methods.

2 Method

2.1 Overall Framework

As illustrated in Fig. 2, the AE-based algorithms learn feature representations
with RGB images in a self-supervised manner. Handcrafted fusion strategies are
adopted in the test time to fuse IR-VI images. Note that both the encoder and the
decoder are fixed during the test time. Obviously, AE-based solutions have poor
generation performance because significant domain gaps exist between training
and testing data. In contrast, the proposed self-supervised TTT method updates
network parameters for each test sample to generate better fusion images.
Besides, rather than manually design fusion strategies, we design an adapter
to fuse two images. The whole network, including the encoder, the decoder, and
the adapter, is optimized end-to-end during the test-time training with few iter-
ations. Note that this paper does not focus on designing sophisticated network
structures. The encoder and decoder can be any existing well-designed models.

2.2 Training and Testing

Training-Time Training. Assuming that we have a collection of large-scale
dataset with training instance X1,X2, ...,Xn drawn i.i.d from a distribution P .
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Fig. 2. Illustration of the difference between the existing AE-based IVIF methods and
the proposed TTT method. (a) The AE-based solutions train the fusion network on
MS-COCO and (b) test the network on IR-VI images by involving a handcrafted fusion
strategy. Instead of performing (b), we propose (c) a self-supervision test-time training
loss for updating the model parameters, and use a fusion adapter module to extract
and fuse features of source images adaptively.

We aim to train an encoder fθ and decoder gθ to learn effective feature repre-
sentations. Specifically, we train the encoder and decoder using a self-supervised
method by minimizing the following commonly used loss function Ltr:

g′
θ, f

′
θ = arg min

fθ,gθ

1
n

n∑

i=1

Ltr(Xi, gθ(fθ(Xi))), (1)

Ltr = Lpixel + LSSIM , (2)

Lpixel =
∥∥∥Xi − X̂i

∥∥∥
2

F
, (3)

LSSIM = 1 − SSIM(Xi, X̂i), (4)

X̂i = gθ(fθ(Xi))), (5)
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Fig. 3. (a) Overview of the proposed loss function. (b) The high-frequency enhanced
module (HFEM). C refers to the concatenation operation, and S denotes the softmax
function.

where Lpixel indicates the pixel level loss, LSSIM denotes the structure similar-
ity loss. ‖·‖F indicates the Frobenius norm. Xi and X̂i denote the input and
reconstructed images, respectively. SSIM [27] represents the structure similarity
measurement.

Test-Time Training. Let I refers to the IR-VI paired dataset with test samples
(I1ir, I

1
vi), ..., (I

m
ir , I

m
vi ) drawn i.i.d from a distribution Q. Since the distribution Q

may significantly different with P , we develop a self-supervised loss function to
reduce the domain gap and promote the fusion performance. On each test input
(Iir, Ivi), we perform test-time training to minimize the following loss:

g∗
θ , h

∗
θ, f

∗
θ = arg min

g′
θ,hθ,f ′

θ

LTTT (Iir, Ivi, Ifu), (6)

where g∗
θ , h

∗
θ, f

∗
θ denotes the optimized network that will be used to generate

the final result. Ifu is the initial fusion result that obtained via the pre-trained
encoder f ′

θ, decoder g′
θ, and an initial adapter hθ:

Ifu = g′
θ(hθ(f ′

θ(Iir), f ′
θ(Ivi))), (7)

To combine meaningful information of source images, the self-supervised
reconstruction loss LTTT is calculated based on enhanced version of source
images. As shown in Fig. 3, original IR and VI images are first inputted to a
high-frequency enhanced module (HFEM) to calculate enhanced versions I∗

ir
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and I∗
vi. Then, we propose a mutual attention mechanism that concatenates the

I∗
ir and I∗

vi to generate two attention masks, which can be expressed as:

m1,m2 = Softmax(Concate(I∗
ir, I

∗
vi)), (8)

These two attention masks force the network to pay more attention to the
high-frequency information of the source images, and thus the fusion result will
contain rich texture details. With the guidance of attention masks, our LTTT

can be defined as follows:

LTTT (Iir, Ivi, Ifu) = m1 · ‖Ifu − I∗
ir‖2F + m2 · ‖Ifu − I∗

vi‖2F , (9)

Note that, for each test pairs, the gradient-based optimization for Eq. (6)
always starts from f ′

θ, g
′
θ, and hθ. Same as [4], we discard g∗

θ , h∗
θ, f

∗
θ after making

a reconstructed result on each test input (Iir, Ivi), and reset the weights to f ′
θ,

g′
θ, and hθ.

Adapter. Instead of manually designing fusion rules, the proposed method
develops a learnable adapter to fuse features of two source images. This is a
benefit for our TTT framework, that allows the network to update parameters
in the test time. The calculation of the proposed adapter hθ is defined as follow:

H = Conv(ReLU(Conv(Ico))), (10)

Ico = Concat(f ′
θ(Iir), f ′

θ(Ivi)))), (11)

where H is the output feature of the adapter, Ico is the concatenate of features
generated by the encoder, Conv(·) is a 2D convolutional layer, ReLU(·) is the
nonlinear activation function. Our adapter has two convolutional layers and one
activation function layer. During the TTT process, the adapter parameters will
be updated along with the encoder and decoder to further adapt to the data
distribution of the test samples.

3 Experiments

3.1 Experiment Configuration

Baseline Model. In this work, we focus on the problem of domain shifts
in IVIF, especially for AE-based solutions. Therefore, we select several rep-
resentation AE-based methods as our baseline models. Specifically, we choose
DenseFuse [6] as our default baseline model. We also conduct experiments
on other AE-based solutions [7,26] to verify the effectiveness of our proposed
method in the ablation study.

Training Dataset. During the training-time training step, similar to exist-
ing AE-based networks, the encoder and the decoder are pre-trained on MS-
COCO [11] dataset, which consists of more than 80,000 daily RGB images. All
images are converted into grayscale versions and resized to 256 × 256.
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Testing Datasets. This study validates the proposed method on two pub-
licly IVIF datasets. A total of 42 pairs of images are utilized. In the TNO test
dataset [24], there are 21 infrared and visible image pairs of military scenes. The
remaining 21 pairs are from the VIFB [33] dataset with diverse environments,
including indoor, outdoor, low-light, and over-exposure scenes.

Implementation Details. During the training-time training process, we use
the same epoch, batch size, learning rate, and optimizer as in the DenseFuse [6].
For the test-time training, Adam is used as an optimizer with a learning rate
of 1e-4. We update the network with five iterations for each test sample during
test-time training. All the experiments are conducted on the Pytorch platform,
using a GeForce RTX 3090 GPU with 24GB memory.

Evalution Metrics. For quantitative analysis, we adopt five metrics to evalu-
ate our method and other comparative approaches, including mutual information
(MI) [19], information entropy (EN) [20], sum of the correlations of differences
(SCD) [1], multiscale structural similarity (MS-SSIM) [28], and visual informa-
tion fidelity (VIFF) [21].

Comparison Methods. To verify the effectiveness of our proposed method, we
compared the proposed with nine existing state-of-the-art algorithms, including
two traditional methods: gradient transfer fusion (GTF) [16], MDLatLRR [9],
and seven deep-learning-based methods: DeepFuse [8], DenseFuse [6], Nest-
Fuse [7], U2Fusion [30], DDcGAN [17], Res2Fusion [26] and TLCM [12].

3.2 Performance Comparison on TNO

The qualitative results on the TNO dataset are shown in Fig. 4. All methods can
fuse the infrared image’s thermal radiation information and the visible image’s
structure information, and our proposed method achieves the best visual quality
with sharper texture details. Visually, the details of GTF, MDLatLLR, Deep-
Fuse, U2Fusion, and TLCM are not clear enough, and the texture details of the
landing gear are blurred. The fused image of DDcGAN is ambiguous and suffers
from distortion. Although DenseFuse, NestFuse, and Res2Fuse can fuse more
thermal radiation information, textures and details are degraded. Our method
introduces TTT on the AE-based method, which preserves clear texture infor-
mation and can better balance the two kinds of information of the source images.
The quantitative results on the TNO dataset are shown in Table 1. As can be
seen, our method achieves promising performance according to five measure-
ments. Specifically, the comparison between our method and DenseFuse demon-
strates that the proposed TTT can significantly improve the fusion performance.
Besides, our method achieves the best MS-SSIM and SCD, demonstrating the
superiority of the proposed method.
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Fig. 4. Qualitative comparison of the proposed method with the state-of-the-art meth-
ods on “helicopter” on the TNO dataset. The red and green boxes show the tail and
landing gear of the helicopter, respectively. (Color figure online)

Table 1. Comparisons of different methods on the TNO and VIFB dataset. Red indi-
cates the best result, and blue represents the second best result.

TNO VIFB
Methods

EN MI MS-SSIM SCD VIFF EN MI MS-SSIM SCD VIFF

GTF 6.590 13.181 0.812 0.908 0.595 6.545 13.091 0.809 0.802 0.314

DeepFuse 6.438 12.876 0.881 1.473 0.681 6.694 13.388 0.887 1.312 0.399

DenseFuse 6.451 12.902 0.869 1.484 0.686 6.982 13.965 0.919 1.497 0.520

MDLatLLR 6.489 12.979 0.904 1.489 0.710 6.759 13.518 0.913 1.329 0.775

NestFuse 6.930 13.961 0.858 1.578 0.926 6.921 13.841 0.893 1.455 0.861

U2Fusion 6.468 12.936 0.899 1.459 0.681 7.143 14.285 0.907 1.461 0.832

DDcGAN 7.479 14.957 0.777 1.450 0.714 7.484 14.968 0.789 1.291 0.725

Res2Fusion 6.764 13.529 0.866 1.727 0.818 6.851 13.702 0.862 1.372 0.852

TLCM 6.957 13.914 0.917 1.643 0.785 6.947 13.895 0.917 1.458 0.480

Ours 6.796 13.593 0.936 1.887 0.783 7.046 14.092 0.946 1.692 0.825

3.3 Performance Comparison on VIFB

We further evaluate our method on the VIFB dataset. Qualitative results are
shown in Fig. 5. As can be observed, for the brightness of the pedestrian in the
red box and the detail of the car in the green box, our method has rich thermal
radiation information and texture details. In addition, our method can effectively
balance the global brightness of the image. The quantitative results on the VIFB
dataset are shown in Table 1. The proposed method achieves the best MS-SSIM
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Fig. 5. Qualitative comparison of the proposed method with the state-of-the-art meth-
ods on “walking2” on the VIFB dataset. The red and green boxes show the pedestrian
and car, respectively. (Color figure online)

Table 2. Ablation studies on the impact of the TTT and adapter on the TNO dataset.
The best is marked in bold.

Model TTT Adapter EN MI MS-SSIM SCD VIFF

× × 6.571 13.143 0.788 1.592 0.940

� × 6.787 13.574 0.929 1.846 0.782DenseFuse

� � 6.797 13.593 0.936 1.887 0.783

× × 6.892 13.785 0.879 1.758 0.924

� × 6.796 13.592 0.929 1.849 0.787NestFuse

� � 6.730 13.459 0.929 1.881 0.786

× × 6.764 13.529 0.866 1.727 0.878

� × 6.770 13.540 0.924 1.842 0.779Res2Fusion

� � 6.790 13.580 0.925 1.849 0.790

and SCD scores. Our method can largely improve the performance of DenseFuse
with the proposed TTT strategy.

3.4 Ablation Study

The Effectiveness of TTT. The proposed method can be added to most
existing AE-based IVIF methods. Here, we choose DenseFuse, NestFuse, and



86 G. Zheng et al.

Fig. 6. Influence of the number of iterations in the TTT stage on the results of IR-VI
image fusion. The quality of the fused images can be enhanced by the proposed TTT
after a small number of iterations.

Res2Fusion as the baseline methods to verify the proposed method. During
the training-time training phase, MS-COCO is employed to train the fusion
model, and the hyperparameter settings are consistent with each original base-
line method. The experiment results of different baseline methods with and with-
out TTT are listed in Table 2. From the table, one can observe that TTT can
greatly improve performance.

The Effectiveness of the Fusion Adapter. To understand the role of the
adapter, we replace the adapter with feature averaging, denoted by without
adapter. Test results are reported in Table 2, which indicates that the proposed
adapter is better than handcrafted fusion rules. This is because our adapter is
learnable and can handle diverse and complex real-world scenarios.

Ablation Studies of the Iteration. We investigate the impact of the number
of iterations in the TTT stage. As shown in Fig. 6, with the iterations increase,
the visual quality of the fused image gradually improves. Note that, in our exper-
iments, continually increasing the iterations can obtain different quality outputs.
But we found five updates have already achieved promising results. By compre-
hensively considering the run-time and performance, we set the default iteration
times as five.

4 Conclusion

In this paper, we focus on developing test-time training methods to improve the
generalization performance of AE-based networks. We propose a self-supervision
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loss to drive the model parameters updating during the test time. This loss func-
tion is based on a mutual attention mechanism. Additionally, a fusion adapter
module is proposed to adaptively fuse features of two source images. Extensive
experiments and ablation studies strongly support the proposed method.
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