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Abstract

Pan-sharpening aims to leverage the high-frequency signal of
the panchromatic (PAN) image to enhance the resolution of
its corresponding multi-spectral (MS) image. However, deep
neural networks (DNNs) tend to prioritize learning the low-
frequency components during the training process, which
limits the restoration of high-frequency edge details in MS
images. To overcome this limitation, we treat pan-sharpening
as a coarse-to-fine high-frequency restoration problem and
propose a novel method for achieving high-quality restora-
tion of edge information in MS images. Specifically, to effec-
tively obtain fine-grained multi-scale contextual features, we
design a Band-limited Multi-scale High-frequency Generator
(BMHG) that generates high-frequency signals from the PAN
image within different bandwidths. During training, higher-
frequency signals are progressively injected into the MS im-
age, and corresponding residual blocks are introduced into
the network simultaneously. This design enables gradients to
flow from later to earlier blocks smoothly, encouraging in-
termediate blocks to concentrate on missing details. Further-
more, to address the issue of pixel position misalignment aris-
ing from multi-scale features fusion, we propose a Spatial-
spectral Implicit Image Function (SIIF) that employs implicit
neural representation to effectively represent and fuse spatial
and spectral features in the continuous domain. Extensive ex-
periments on different datasets demonstrate that our method
outperforms existing approaches in terms of quantitative and
visual measurements for high-frequency detail recovery.

Introduction
Compared with single-channel or RGB images, multispec-
tral (MS) images contain richer spectral information. There-
fore, MS imaging has been widely used in environmen-
tal monitoring, agriculture, mapping services and so on.
Nevertheless, the physical constraints of satellites impede
the direct capture of high-resolution multispectral (HRMS)
images via sensors. As a substitute, they can only ob-
tain high-resolution panchromatic (PAN) images along with
their corresponding low-resolution multispectral (LRMS)
images. Pan-sharpening is a technique that injects the high-
resolution information from the PAN image into its corre-
sponding LRMS image to generate the HRMS image.
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Figure 1: Injecting high-frequency signals into MS image
progressively. The residual map between the predicted result
and ground truth shows that as the training stage progresses,
finer edge details are reconstructed.

The high-quality restoration of high-frequency informa-
tion in MS images is the core task of pan-sharpening.
However, during the training process, deep neural networks
(DNNs) often learn to fit target functions from low to high
frequencies (Xu et al. 2019; Xu, Zhang, and Xiao 2019),
which is referred to as spectral bias (Rahaman et al. 2019).
This tendency can restrict the network’s ability to capture
fine edge details. Training models in a meaningful order may
enhance their effectiveness in tackling challenging tasks
(Dai et al. 2020; Guo et al. 2018; Guo et al. 2020; Karras
et al. 2017; Soviany et al. 2022; Zhou, Wang, and Bilmes
2021). Therefore, we regard pan-sharpening as a coarse-to-
fine high-frequency reconstruction problem. Figure 1 dis-
plays the fusion results of HRMS images at different train-
ing stages. It could be observed that as the training stage
progresses, finer edge details are reconstructed.

To effectively obtain multi-scale contextual features,
some approaches (Khan et al. 2008; Otazu et al. 2005;
Ranchin and Wald 2000; Aiazzi et al. 2006) attempt to de-
compose the PAN and LRMS images by using multiresolu-
tion tools, such as wavelets and Laplacian pyramids. Subse-
quently, they fuse the generated features to achieve a com-
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prehensive representation. However, due to the disparities
in high-frequency regions, the results generated by fusing
these decomposed components often suffer from aliasing
and local dissimilarities. Existing CNN-based multi-scale
feature extraction methods (Wang et al. 2023, Fu et al. 2020)
represent spatial and spectral features in the discrete do-
main, which can disrupt the distribution characteristics of
the physical signals. Moreover, the feature extraction capa-
bility is severely limited by the simple combination of di-
lated convolution operations with different dilated factors
(Fu et al. 2020). Simply repeatedly applies nonlinear fil-
ters (such as a sinusoid function) to the network’s input,
then multiplies the linear functions of these features to-
gether, signals at multiple scales can be effectively repre-
sented (Fathony et al. 2020; Lindell et al. 2022). Inspired by
this, we design a Band-limited Multi-scale High-frequency
Generator (BMHG) that generates high-frequency signals
from the PAN image within different bandwidths. Specif-
ically, by explicitly controlling the bandwidth of the input
signals, different scales of high-frequency signals can be
generated that approximate a normal distribution. As the
training progresses, higher-frequency signals are generated
and progressively injected into the MS image.

In MS images, the different spectra are approximately
continuous. However, sensors typically store and represent
an MS image as a 3D array of pixels, disrupting the continu-
ity of the physical signals. By using CNN to represent and
fuse multi-scale features in the discrete domain (Fu et al.
2020), pixel-level alignment cannot be precisely achieved,
leading to the appearance of artifacts and edge misalign-
ment in the fused results. Benefits from its powerful abil-
ity to represent signals in the continuous domain (Sitzmann
et al. 2020; Tancik et al. 2020), implicit neural representa-
tion (INR) has achieved impressive results in the fields of
image super-resolution (Chen, Liu, and Wang 2021), scene
rendering (Mildenhall et al. 2021; Niemeyer et al. 2020),
and 3D reconstruction (Jiang et al. 2020; Park et al. 2019;
Saito et al. 2019) in recent years. Additionally, in the realm
of image representation, employing periodic functions (Sitz-
mann et al. 2020), rather than traditional activation functions
like ReLU, offers an effective approach for modeling sig-
nals with fine details. To represent HRMS images with high
fidelity, we approach the problem of fusing spatial and spec-
tral information in pan-sharpening from the perspective of
INR. We design the Spatial-spectral Implicit Image Function
(SIIF) for representing HRMS images in a continuous man-
ner. In SIIF, a HRMS image is represented as a set of latent
codes distributed in 2D spatial dimensions and 1D spectral
dimension. Given a 2D spatial coordinate and a 1D spectral
coordinate, the decoding function takes the coordinate in-
formation and queries the local latent codes around the co-
ordinate as inputs, then predicts the RGB value at the given
coordinate as an output.

In summary, the contributions of this work are as follows:

• We propose a novel pan-sharpening method that utilizes
a progressive strategy to fuse spatial and spectral features
in the continuous domain. This approach effectively re-
solves the difficulty of accurately fitting high-frequency

functions of DNNs during the learning process.
• We design a multi-stage band-limited signal generation

network called BMHG. This network generates multi-
scale high-frequency signals that closely approximate the
distribution characteristics of the physical world by ex-
plicitly controlling the bandwidth of the input signals.

• We design an implicit image representation function SIIF
that effectively fuses the features of two kinds of modal-
ity images in both the continuous 2D spatial domain
and continuous 1D spectral domain. The ablation exper-
iments also prove the effectiveness of SIIF.

• Extensive experiments on three satellite datasets demon-
strate that our proposed method outperforms existing
methods in both quantitative and qualitative metrics.

Methodology
Figure 2 shows the overall architecture of our Progressive
Implicit Feature Fusion Network (PIF-Net), which mainly
consists of three parts, Band-limited Multi-scale High-
frequency Generator (BMHG), Spatial-spectral Implicit Im-
age Function (SIIF), and Progressive High-frequency Injec-
tion Module (PHIM). The details will be illustrated below.

Band-limited Multi-scale High-frequency
Generator
To ensure accurate recovery of edge information for objects
of different sizes in MS images, it is necessary to effectively
obtain fine-grained multi-scale contextual features. Subse-
quently, these multi-scale features need to be stretched to
the same resolution to fit convolutional operations. However,
during this process, simple bilinear or bicubic interpolations
can easily result in artifacts and misalignment. Therefore,
it is crucial to eliminate misalignment arising from differ-
ent scale features. Inspired by (Lindell et al. 2022), we ma-
nipulate the bandwidth of input signals explicitly to enable
the network to generate high-frequency signals of different
scales. Specifically, given the PAN image P ∈ RH×W×1

and LRMS image M ∈ R
H
r ×W

r ×C , their edge information
is first extracted:

IhpPAN = ∇(P )

IhpM↑ = UP(∇(M))
(1)

where UP (·) represents upsampling the gradient image of
M to match the resolution of P , and ∇ represents gradi-
ent operation. Then, gradient images of two kinds of modal-
ity images can be obtained. Next, we derive the frequency-
domain signal of the PAN image using positional encoding:

P(x) = (sin(20 · x · π), cos(20 · x · π), · · · ,
sin(2L−1 · x · π), cos(2L−1 · x · π)),

L = log2N
(2)

Here, x represents the 2D spatial coordinate of a pixel,
L represents the high-order harmonic indices of the signal
and N represents the spatial resolution of P . We initial-
ize BMHG to have a maximum bandwidth B of 0.5 cy-
cles/pixel, which is the Nyquist limit for the image.
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Figure 2: The overall framework of PIF-Net. It consists of three key parts: Multi-scale High-frequency Generator Module,
Spatial-spectral Implicit Image Function and Progressive Information Injection Module.

Figure 3: Architectures of the proposed two key modules. The sub-figure (a) and (b) depict the BMHG and PHIM respectively.

We design a multi-stage band-limited signal generation
network, and initialize input signals for each stage by lim-
iting their frequency range, and use linear layers to achieve
signal interaction between different stages during the for-
ward propagation of the network. The structure of BMHG is
shown in Figure 3 (a):

si = PBi

−Bi

h0 = s0
hi = si ⊙ (Wisi−1 + bi)

yi = Wout
i hi + bouti , i = 0, 1, · · · , n

(3)

where si represents the input signal of the PAN image in the
i-th stage and Bi represents the bandwidth of si, Wi and
bi represent the weight and bias of the i-th hidden linear
layer (dark gray block), while Wout

i and bouti represent the
weight and bias of the i-th output layer (light gray block), hi
represents the intermediate signal generated in the i-th stage
and ⊙ indicates the Hadamard product.

The input signal from the previous stage first passes
through a linear layer, then interacts with the current in-
put signal, and finally the output signal yi is generated af-
ter passing through another linear layer, yi also can be ex-
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pressed as:

yi =

Ni−1∑
j=0

αj · sin
(
ϕj

)
Nn+1 =

n∑
i=0

2i · di+1
h

(4)

This means that each signal from the output layer can be rep-
resented as a sum of multiple sine waves with amplitude of
αj and phase of ϕj , where the bandwidth of ϕj depends on
the frequency of the input signals of all previous stages, dh is
the dimension of the signal generated from the hidden layer.
The distribution of yi from each stage is approximately zero-
mean Gaussian with variance:

var (ωi) ·
n∑

m=0

m ·
2n−mdn+1−m

h∑n
i=0 2

idi+1
h

(5)

where ωi is the frequency of ϕi and var(·) means the vari-
ance. The ideal multi-scale high-frequency information for
P can be generated at each stage under the supervision of
IhpPAN . Furthermore, the high-frequency signals of different
scales from the PAN image, along with the high-frequency
signals from the LRMS image, will be jointly fed into the
next stage of the network:

HP (P,M) = concat(y, IhpM ) (6)

Spatial-spectral Implicit Image Function
We apply two encoder networks to extract spatial feature and
spectral feature from the PAN image and the MS image re-
spectively:

Fspa = Eφ(HP (P,M))

Fspec = Eψ(UP(M))
(7)

where Eφ and Eψ are two encoder networks with parame-
ters φ and ψ respectively, their details are shown in Figure
4. Increasing the number of feature maps beyond a certain
level would result in numerical instability during the train-
ing procedure (Szegedy et al. 2017; Lim et al. 2017). So we
adopt residual scaling with a factor of 0.1. In each residual
block, constant scaling layers (Mult block) are placed after
the last convolution layers.

Figure 4: The detail of encoder Eφ and Eψ .

After obtaining the spatial feature Fspa and the spectral
feature Fspec, we further fuse them in the continuous do-
main to achieve accurate pixel-level alignment. The spatial-
spectral feature in pan-sharpening can be seen as latent
codes distributed in the continuous 3D space, with each fea-
ture vector assigned a 2D spatial coordinate and a 1D spec-
tral coordinate. The latent code at the coordinate x∗ in the
discrete feature map, which is closest to the query coordi-
nate xq in the continuous feature map, can be represented
as:

I(x∗) = fθ(Fspa(x
∗), Fspec(x

∗), xq − x∗, λb) (8)

where xq – x∗ represents the offset between x∗ and xq ,
Fspa(x

∗) and Fspec(x
∗) represent the spatial and spectral

feature value at x∗ respectively, λb represents the band in-
dex to which the feature map belongs, which is normalized
to [-1, 1], and fθ represents an MLP network with param-
eters θ. Figure 2 illustrates the approach for calculating the
pixel value at query coordinate xq . Through the neighboring
nodes of the query coordinate xq in each feature map, we
can derive its pixel value:

vq =
∑

i∈{00,01,10,11}

Siq
S

· I(xiq) (9)

where i ∈ {00, 01, 10, 11} represents the four neighbor-
ing nodes of xq (top-left, top-right, bottom-left, and bottom-
right), Siq represents the rectangular area formed by xq and
xiq , and S =

∑
i∈{00,01,10,11} S

i
q .

Progressive High-frequency Injection Module
DNNs often fit target functions from low to high frequen-
cies during the training process. In another word, at the early
stage of training, the low-frequencies are fitted and as itera-
tion steps of training increase, the high-frequencies are fitted
(Xu, Zhang, and Luo 2022). As a result, the learning of high-
frequency information would be limited. In order to inject
finer high-frequency details from the PAN image into the
MS image more effectively, we design a Progressive High-
frequency Injection Module (PHIM). We divide the training
process into several stages. The training starts with a single-
scale coarse high-frequency signal, and then progressively
adds higher-frequency signals into new stages. As shown in
Figure 3 (b), for the high-frequency signal yi generated from
the i-th output layer of the BMHG, it passes through a block
containing two linear layers together with the feature of the
previous stage of the network:

ci = BLi(ci−1, F
i
spa), i = 1, · · · , n

c0 = ıb
(10)

where ıb is the feature derived from the last hidden layer of
the base block. The additional block BLi outputs a finer re-
sult based on the latent features ci−1 obtained from the last
mapping layer of the previous block. BLi has mutual ben-
efits for all scales, and it enables gradients obtained from
latter blocks to smoothly flow back to earlier blocks and en-
courages intermediate blocks to concentrate on the missing
details.
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Loss Function
In this paper, we use L1 loss to optimize the fusion results
in each stage at the pixel level:

L1(X̂,X) =
1

n

n∑
i

|X̂(i)−X(i)| (11)

where n is the total number of sampled pixels, X̂(i) repre-
sents the predicted value for pixel i, and X(i) represents its
corresponding ground truth. We use L2 loss to optimize the
BMHG:

L2(yk, IhpPAN ) = ||yk − IhpPAN ||22 (12)

where yk is the high-frequency signal generated by the k-th
output layer.

Experiments
Baseline Methods
To demonstrate the effectiveness of our method, we com-
pare the performance of our method with several state-of-
the-art methods. We select five traditional pan-sharpening
methods, including SFIM (Liu 2002), Brovey (Gillespie,
Kahle, and Walker 1987), GS (Laben and Brower 2000),
IHS (Carper et al. 1990), and GFPCA (Liao et al. 2015), and
five deep learning-based pan-sharpening methods, including
BAM (Jin et al. 2021), SFIIN (Zhou et al. 2022), GCPNet
(Yan et al. 2022), Band Aware (Zhou et al. 2023) and MD-
CUN (Yang et al. 2022).

Implementation Details
We implement our network on the PC with a single NVIDIA
TITAN RTX 3090 GPU, and we build our network in Py-
torch framework. The learning rate is set to 1 × 10−4 and
the batch size is set to 4.

The frequency of the signal at each input layer is ini-
tialized when entering BMHG so that the outputs y0, y1,
y2, y4 are constrained to one eighth, quarter, half, and full
bandwidth. Specifically, we set B0 = B1 = B/8, and
B2 = B3 = B4 = B/4 such that

∑
iBi = B. We set the

number of epochs for each stage of training to 100, 100, 200,
and 200, respectively. The experimental results presented in
this paper are all testing outputs based on the model of the
last training stage.

Datasets and Evaluation Metrics
Datasets. The paired training samples are unavailable in
practice. To construct the training dataset, we utilize the
Wald protocol (Wald, Ranchin, and Mangolini 1997) to gen-
erate the required paired samples. For example, given an
origin high-resolution MS image H ∈ RH×W×C and its
corresponding PAN image P̄ ∈ RrH×rW×c image, both of
them are downsampled with ratio r to obtain image pairs
M ∈ R

H
r ×W

r ×C and P ∈ RH×W×c in the training set. We
use three satellite image datasets in our experiments, includ-
ing WorldView-II, WorldView-III and GaoFen2, each con-
taining several hundred PAN-LRMS image pairs. The PAN
images are cropped into patches with the size of 128× 128,

and the corresponding LRMS patches are with the size of
32× 32.

Evaluation Metrics. We use the peak signal-to-noise ra-
tio (PSNR), the structural similarity (SSIM), SAM, and the
relative dimensionless global error in synthesis (ERGAS) as
quantitative metrics to evaluate the image quality on three
datasets. Additionally, to compare the models’ generaliza-
tion ability, we test them on 200 full-resolution real datasets
without down-sampling. The resolution of original PAN im-
ages is 128 × 128, and the corresponding MS images reso-
lution is 32× 32. Since this dataset does not contain ground
truth, we use three no-reference image quality evaluation
metrics to assess model performance, including the spectral
distortion index Dλ, the spatial distortion index DS , and the
quality without reference QNR.

Comparison with SOTA Methods
Table 1 presents the performance of our proposed method
and the baseline methods on three datasets, with the
best results bolded. Our method outperforms existing pan-
sharpening methods in all metrics. Specifically, compared
to the second-best results, our method achieves a PSNR
improvement of 0.13 dB, 0.32 dB, and 1.66 dB on the
WorldView-II, WorldView-III and GaoFen2 datasets respec-
tively. Moreover, our method has shown significant improve-
ments over other metrics as well. Additionally, we show the
comparison of the visual results in Figure 5 and Figure 6.
The top two rows compare the fusion results with SOTA
methods, and the bottom row are the MSE residues between
the pan-sharpened results and the ground truth. Traditional
method (such as GFPCA) tends to lose a significant amount
of information during the process of feature dimension re-
duction, resulting in severe spatial and spectral distortion
in the fusion results. By zooming in on the local regions,
it is apparent that varying degrees of artifacts present in the
results of current deep learning-based methods. This chal-
lenge arises due to the difficulty of achieving exact pixel-
level alignment within the discrete feature space.

To evaluate the generalization ability of our network, we
apply a pre-trained model trained on unseen full-resolution
real dataset. Table 2 and Figure 7 show the results. Our
method demonstrates superior visual effects in terms of col-
ors and artifacts. For example, the red regions in the bottom-
left show clearer contours.

Ablation Experiments
Band-limited Multi-scale High-frequency Generator
(BMHG), Spatial-spectral Implicit Image Function (SIIF),
and Progressive High-frequency Injection Module (PHIM)
are three key modules of our network, we conduct a series
of ablation experiments on the WV2 dataset to demonstrate
their effectiveness and necessity. We set 5 different con-
figurations for the corresponding network variants of our
proposed method and the results of ablation experiments are
shown in Table 3.

Band-limited Multi-scale High-frequency Generator.
BMHG is used to generate high-quality multi-scale high-
frequency signals. For experiment (I) and (II) in Table 3, we
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Method WorldView-II WorldView-III GaoFen2
PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓ PSNR↑ SSIM↑ SAM↓ ERGAS↓

SFIM 34.1297 0.8975 0.0439 2.3449 21.8212 0.5457 0.1208 8.9730 36.9060 0.8882 0.0318 1.7398
Brovey 35.8646 0.9216 0.0403 1.8238 22.5060 0.5466 0.1159 8.2331 37.7974 0.9026 0.0218 1.3720

GS 35.6376 0.9176 0.0423 1.8774 22.5608 0.5470 0.1217 8.2433 37.2260 0.9034 0.0309 1.6736
IHS 35.2962 0.9027 0.0461 2.0278 22.5579 0.5354 0.1266 8.3616 38.1754 0.9100 0.0243 1.5336

GFPCA 34.5581 0.9038 0.0488 2.1411 22.3344 0.4826 0.1294 8.3964 37.9443 0.9204 0.0314 1.5604
BAM 41.3527 0.9671 0.0239 0.9932 30.3845 0.9188 0.0773 3.1679 45.7419 0.9836 0.0134 0.6267
SFIIN 41.7244 0.9725 0.0220 0.9506 30.5971 0.9236 0.0741 3.0798 47.4712 0.9901 0.0102 0.5462

GCPNet 41.8228 0.9694 0.0227 0.9291 30.5949 0.9227 0.0755 3.0751 47.4165 0.9892 0.0102 0.5472
Band Aware 41.8929 0.9704 0.0223 0.9266 30.6050 0.9220 0.0753 3.0825 47.3186 0.9894 0.0102 0.5508

MDCUN 41.9269 0.9722 0.0215 0.9050 30.5668 0.9227 0.0744 3.0987 47.2023 0.9879 0.0105 0.5533
Ours 42.0635 0.9731 0.0210 0.8879 30.9309 0.9264 0.0705 2.9634 49.1388 0.9905 0.0090 0.4469

Table 1: Quantitative comparison of reference metrics. The best values are bolded. The up or down arrow indicates higher or
lower metric corresponding to better images.

Metrics SFIM GS Brovey IHS GFPCA BAM SFIIN GCPNet Band Aware MDCUN Ours
Dλ↓ 0.0822 0.0696 0.1378 0.0770 0.0914 0.0755 0.0681 0.0723 0.0701 0.0672 0.0648
DS↓ 0.1087 0.2456 0.2605 0.2985 0.1635 0.1159 0.1119 0.1144 0.1391 0.1147 0.1062

QNR↑ 0.8214 0.7025 0.6390 0.6485 0.7615 0.8211 0.8466 0.8265 0.8352 0.8255 0.8476

Table 2: Evaluation on the real-world full-resolution scenes from GaoFen2 dataset. The best values are bolded. The up or down
arrow indicates higher or lower metric corresponding to better.

Figure 5: The visual comparisons between other pan-sharpening methods and our method on WorldView-II satellite.

remove the BMHG module and replace it with a dilated net-
work (Fu et al. 2020) to verify its necessity. Table 3 shows
that removing BMHG will degrade all metrics. Therefore,
BMHG plays a significant role in our network.

Spatial-spectral Implicit Image Function. SIIF is uti-
lized to fuse spatial and spectral features in the continuous
domain. For experiment (I) and (III) in Table 3, we vali-
date its effectiveness by replacing SIIF with a CNN (Yang

et al. 2017). The results in Table 3 indicate that substituting
SIIF with CNN significantly reduces network performance.
Therefore, SIIF is crucial in our network.

Progressive High-frequency Injection Module. PHIM
enhances the network’s ability to fit high-frequency func-
tions by employing a progressive information injection strat-
egy. For experiment (IV) in Table 3, we retain both BMHG
and SIIF while removing PHIM. During the training pro-
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Config BMHG SIIF PHIM PSNR↑ SSIM↑ SAM↓ ERGAS↓
(I) 40.9251 0.9661 0.0230 0.9918

(II) ! 41.3760 0.9677 0.0221 0.9487

(III) ! 41.7689 0.9699 0.0213 0.9111

(IV) ! ! 41.9474 0.9708 0.0211 0.8946

Ours ! ! ! 42.0635 0.9731 0.0210 0.8879

Table 3: Ablation studies about three modules on WV2 dataset. The best values are bolded.

Figure 6: The visual comparisons between other pan-sharpening methods and our method on Gaofen2 satellite.

Figure 7: The visual comparisons between other pan-sharpening methods and our method on full-resolution real dataset.

cess, only the full-bandwidth high-frequency signals from
the PAN image are fused. The results in Table 3 indicate that
including PHIM results in a 0.11dB improvement in PSNR,
demonstrating the effectiveness of this module.

Conclusion
In this paper, we propose a novel pan-sharpening network
named PIF-Net that aims to progressively restore high-

frequency signals of varying scales in the MS image in the
implicit space. We design a multi-stage band-limited signal
generation network to generate multi-scale high-frequency
information and an implicit image representation function
is designed to fuse the spatial and spectral features in the
continuous domain. Extensive experiments on three satellite
datasets demonstrate that our proposed method outperforms
existing methods in both quantitative and qualitative metrics.
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