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Abstract. Existing low-light image enhancement (LIE) methods have
achieved noteworthy success in solving synthetic distortions, yet they
often fall short in practical applications. The limitations arise from two
inherent challenges in real-world LIE: 1) the collection of distorted/clean
image pairs is often impractical and sometimes even unavailable, and 2)
accurately modeling complex degradations presents a non-trivial prob-
lem. To overcome them, we propose the Attribute Guidance Diffusion
framework (AGLLDiff), a training-free method for effective real-world
LIE. Instead of specifically defining the degradation process, AGLLDiff
shifts the paradigm and models the desired attributes, such as image
exposure, structure and color of normal-light images. These attributes
are readily available and impose no assumptions about the degradation
process, which guides the diffusion sampling process to a reliable high-
quality solution space. Extensive experiments demonstrate that our ap-
proach outperforms the current leading unsupervised LIE methods across
benchmarks in terms of distortion-based and perceptual-based metrics,
and it performs well even in sophisticated wild degradation.

Keywords: Low-light Image Enhancement · Diffusion Model · Real-
world Generalization · Unsupervised Learning · Training-free

1 Introduction

Real-world low-light image enhancement (LIE) aims to ameliorate the quality
and brightness of an image suffering from unknown degradation, such as low
contrast, multiple artifacts, poor visibility, sensor noise, etc. Great improvement
in enhancement quality has been witnessed over the past few years with the
exploitation of generative priors [35,58,95]. For instance, Generative Adversarial
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Fig. 1: Motivation of our AGLLDiff. (a) represents the data distribution of normal-
light samples and degraded samples. It is evident that degradation significantly deviates
from normal-light samples. (b) conceptually illustrate the geometries of the proposed
attribute guidance sampling algorithm. It shows that, given the initial latent, which
lies in the low-probability region, attribute guidance guides the latent to move towards
its vicinal high-probability region. (c) presents that imposing gaussian noise on the de-
graded sample and its corresponding reference sample makes the distributions between
them less distinguishable.

Networks (GANs) [19,25] that are trained on extensive datasets of clean images
and learn rich knowledge of real-world scenes have succeeded in LIE through
GAN inversion. Compared to GANs, Denoising Diffusion Probabilistic Models
(DDPMs) [7,8, 20, 30, 36, 38, 63, 79] yield more high-fidelity and realistic details,
thereby fostering a surge of interest in adapting diffusion models to LIE [31,34,
67,77,89,93].

Recent diffusion-based LIE methods can be roughly classified into two cate-
gories: 1) The common approaches [67,77,88,89] are dedicated to accurately
modeling degradation process via supervised learning, which show proficiency in
synthetic degradation scenes but lack robustness to handle challenging unseen
degradations. This inadaptability primarily stems from the inconsistency be-
tween the synthetic degradation of training data and the actual degradation in
the real world. Enriching the synthetic data for model training would improve
the models’ generalizability, but it is obviously impractical to simulate every
possible degradation in the real world. 2) The second ones [23, 49] strive to
exploit the diffusion priors in the pre-trained diffusion models, which are effective
in adapting to multiple degradations. Yet, despite their versatility, these meth-
ods are inevitably constrained in terms of generalizability, as they require prior
knowledge of the specific degradation process in advance. In practice, degrada-
tions in the wild often include a mixture of multiple types, posing a challenge
to accurately model them. In summary, two primary challenges are commonly
encountered in real-world LIE: i) the collection of distorted/clean image pairs is
often impractical and sometimes even unavailable, and ii) accurately modeling
complex degradations presents a non-trivial problem.

To address the aforementioned challenges, we introduce a novel training-
free and unsupervised framework, named AGLLDiff, for real-world low-
light enhancement. In contrast to prior works that predefine the degradation
process, our approach models the desired attributes and incorporates
this guidance within the diffusion generative process. Concrectly, we
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leverage a well-performing diffusion model (DM) [22, 61, 90], which generates
images through a stochastic iterative sampling process, and the attributes act
as classifiers to constrain the generative process to a reliable high-quality (HQ)
solution space. As shown in Fig. 1, noisy images are degradation-irrelevant con-
ditions for the DM generative process. Adding extra gaussian noise makes the
degradation less distinguishable compared with its corresponding reference dis-
tribution. Since diffusion prior can serve as a natural image regularization, one
could simply guide the sampling process with easily accessible attributes such as
image exposure, structure and color of normal-light images. By constraining
a reliable HQ solution space, the core of our philosophy is to bypass
the difficulty of discerning the prior relationship between low-light and
normal-light images, thus improving generalizability.

Our contributions can be summarized as follows:

– We introduce a novel paradigm, AGLLDiff, a training-free and unsupervised
method that requires no degradation of prior knowledge but yields high
fidelity and generality towards real-world low-light image enhancement.

– We demonstrate that AGLLDiff suffices to guide the pre-trained diffusion
models to a reliable high-quality solution space through easily accessible
attributes in the HQ image space.

– Comprehensive experiments reveal that our framework achieves both robust-
ness and high quality on heavily degraded synthetic and real-world datasets.

2 Related Work

Low-light Image Enhancement. To transform low-light images into visually
satisfactory ones, numerous efforts have been made over the decades. The con-
ventional approaches are first widely adopted [1,17, 29, 33, 59, 60]. For example,
Wang et al. [73] improved the visibility and contrast by applying gamma correc-
tion and enhancing the dynamic contrast ratio. Guo et al. [28] suggested refin-
ing the initially estimated illumination map by incorporating a structural prior.
Arici et al. [2] introduced penalty terms to avoid the unnatural look and visual
artifacts of the enhanced image. Lee et al. [40] applied the layered difference
representation of 2D histograms to amplify the gray-level differences between
adjacent pixels. The enhancement performance of current conventional methods
relies on tedious hand-crafted priors and is only applicable to specific scenarios.

Recently, the paradigm of low-light image enhancement has gradually shifted
to data-driven approaches based on deep learning [24,26,41,43,50,78,81,92,97].
For instance, Chen et al. [76] combined Retinex theory with a CNN network to
estimate and adjust the illumination map. Ma et al. [54] established a cascaded
illumination estimation process to achieve fast and robust LIE in complex scenar-
ios. Lore et al. [51] developed a stacked sparse denoising autoencoder framework
aimed at improving the quality of low-light images. Lv et al. [52] presented a
multi-branch network that extracts rich features from different levels to enhance
low-light images via multiple sub-networks. Xu et al. [78] proposed a signal-to-
noise (SNR)-aware network that integrates a convolutional short-range branch
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with a transformer-based long-range branch. Cai et al. [6] designed a novel one-
stage Retinex-based framework for LIE. Additionally, in contexts where training
images are scarce, the utility of unsupervised [24,81] and zero-shot learning ap-
proaches [23,26,45] becomes increasingly pronounced.

Diffusion-Based Image Restoration and Low-Light Image Enhance-
ment. Diffusion Models has become increasingly influential in the field of image
restoration (IR) tasks [12,23,37,71,84–86], such as super resolution [62,96], blind
face restoration [18, 74], image fusion [32, 47, 69, 70], dehazing [16, 87], desnow-
ing [13–15], image enhancement [31,77,88,93]. These methods could be broadly
categorized into supervised and unsupervised paradigms. Supervised-based IR
solutions usually rely on large-scale, pre-collected paired datasets to train their
models with great success. Hou et al. [31] devised a diffusion-based framework,
incorporating a global structure-aware regularization to maintain the intricate
details and textures within images. Yi et al. [88] integrated the diffusion model
alongside the Retinex model to enhance low-light images. Jiang et al. [34] em-
ployed wavelet transformation to decrease the input size and a high-frequency
restoration module to maintain the details. Wang et al. [68] and Yin et al. [89]
directly utilized the color map as an extra conditional control to preserve the
color information. A major challenge is that they implicitly assume training
and testing data should be identically distributed. As a result, these methods
often deteriorate seriously in performance when testing cases deviate from the
pre-assumed distribution.

Another prevailing research line is unsupervised-based IR approaches. They
adopt a zero-shot approach to leverage a pre-trained diffusion model for restora-
tion without the need for task-specific training. As an early attempt, Kawar et
al. [37] hypothesized the linear degradation model and relied on the desirable
property of linear formulation to sample from posterior distribution. Wang et
al. [71] introduced the range-null space decomposition to further improve the
zero-shot image restoration. Fei et al. [23] applied a simultaneous estimation
of degradation model to address blind degradation. Yang et al. [80] introduced
a partial guidance mechanism for blind face restoration, wherein intermediate
outputs of the diffusion model are constrained by a classifier to perform photo
restoration. Previous diffusion-based image restoration methods explicitly lever-
aged a degradation model by solving a maximum posterior problem or a posterior
sampling problem to generate solutions. However, for many practical image en-
hancement problems, the underlying degradation model may not be available. In
this work, we propose to model the desired attributes of normal-light
images. Such a strategy is independent of the degradation process,
circumventing the difficulty of modeling the degradation process.

3 Methodology

3.1 Preliminaries of Diffusion Models

The diffusion models [3, 8, 9, 27, 30, 38, 63] belong to a category of generative
models that operate by incrementally incorporating Gaussian noise into training
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data and subsequently acquiring the denoiser to restore the data distribution
p(x) by reversing the process of noise injection.

The forward process q (xt | xt−1) transforms an initial image x0 into Gaus-
sian noise xT ∼ N (0, 1) over T iterations. The following equation can express
the process of each iteration in the diffusion:

q (xt | xt−1) = N
(
xt;

√
1− βtxt−1, βtI

)
, (1)

where xt denotes the noisy image at time-step t, βt is the pre-determined scaling
factor, and N represents the Gaussian distribution. Under the reparameteriza-
tion trick, xt can be written as:

xt =
√
ᾱtx0 +

√
1− ᾱtϵ, (2)

where ᾱt :=
∏t

i=1 (1− βi) and ϵ ∼ N (0, I). Then xT ∼ N (0, I) if T is big
enough, usually T = 1000.

The reverse generative process of the inference stage, starting from a Gaus-
sian random noise map xT ∼ N (0, I) and iteratively performing the denoising
step until it attains a high-quality output x0:

pθ (xt−1 | xt) = N (xt−1;µθ (xt, t) , ΣθI) , (3)

where variance ΣθI can be either time-dependent constants [30] or learnable pa-
rameters [57]. The mean value µθ (xt, t) is generally parameterized by a network
ϵθ (xt, t):

µθ (xt, t) =
1√
αt

(
xt −

βt√
1− ᾱt

ϵθ (xt, t)

)
. (4)

In practice, one can also directly approximate x̂0 from µθ (xt, t):

x̂0 =
xt√
ᾱt

−
√
1− ᾱtϵθ (xt, t)√

ᾱt
. (5)

Classifier Guidance. The classifier guidance is employed to direct an un-
conditional diffusion model towards achieving conditional generation. Here, y
represents the target and pϕ(y | x) symbolizes a classifier, the conditional dis-
tribution is formulated to resemble a Gaussian distribution akin to its uncondi-
tional counterpart, but with the mean shifted by Σθ (xt, t) g [22]:

pθ,ϕ (xt−1 | xt,y) ≈ N (µθ (xt, t) +Σθ (xt, t) g, Σθ (xt, t)) , (6)

where g := ∇x log pϕ(y | x)
∣∣
x=µθ(xt,t)

. The gradient g serves as a guidance that
leads the unconditional sampling distribution towards the condition target y.

3.2 Overview of the AGLLDiff Framework

Our core motivation is to model the desired attributes of normal-light images
and apply them to guide the diffusion generative process into a reliable high-
quality (HQ) space. Such a design is agnostic to the degradation process and
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Fig. 2: The overall framework of our proposed AGLLDiff.

bypasses the difficulty of modeling the degradation process, making it more
suitable for real-world LIE. The enhanced image should simultaneously satisfy:
i) it is faithful to the degraded image, and ii) it conforms to the model distribu-
tion of pre-trained diffusion models that incorporate a vast repository of prior
knowledge about HQ natural images. The overview of AGLLDiff is summarized
in Fig. 2 and Algorithm 1. Given a degraded low-light image y0 in the wild
domain, the diffusion forward process adds a few steps of slight Gaussian noise
to the y0, aiming to narrow the distribution between the degraded image and
its potential counterpart, i.e., the HQ image. After obtaining the noisy image
xt, we implement the reverse generative process through a pre-trained diffusion
denoiser and attribute guidance to generate the enhancement result x0. The in-
herent attributes of normal-light samples, such as image exposure, structure and
color, can be readily derived from their degraded counterparts. Further elabora-
tion on the pivotal components of our method, including attributes, classifiers,
and targets, is provided in subsequent sections.

3.3 Attribute Guidance

Our attribute guidance eschews any assumptions about degradation. Instead,
with diffusion prior acting as a regularization, we provide guidance only on the
desired attributes of HQ images. The key to AGLLDiff is to construct proper
guidance on the generative process.

Attribute and Classifier. The initial step of AGLLDiff is to determine
the desired attributes that the normal-light output possesses. Each of these at-
tributes corresponds to a specific classifier log pϕ(y | x0), and the intermedi-
ate outputs xt are updated by back-propagating the gradient computed on the
loss between the classifier output and the target y. Through this mechanism,
enhanced results can be obtained via an iterative refinement. The significance
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Fig. 3: Statistics and Visualization. (a) The average exposure values of the low-
and normal-light subsets of the five LIE datasets. (b) Visualization of the structure
of low- and normal-light images by the Canny operator. (c) Histogram of the color
distribution of the low- and normal-light images.

of attributes in achieving the desired final result cannot be overstated. This
raises a fundamental question: What attributes are possessed by HQ im-
ages? Through comprehensive observation and statistical analysis, we
conclude that the following three fundamental attributes are typically
found in HQ images: 1) well exposure, 2) clear structure, and 3)
vivid colors. As presented in Fig. 3, we analyzed the average exposure levels
and color distributions of five LIE datasets, visualizing the structure of low- and
normal-light images. The observations are as follows: 1) there exists a significant
discrepancy in average exposure values, with low-light images at around 0.1 and
normal-light images at approximately 0.46, 2) normal-light images have clearer
and richer structures compared to low-light images, and 3) the color distribu-
tion of images in normal light is both more colorful and homogeneous than in
low-light images.

Exposure Guidance Formulation. To guide the output exposure toward
that of normal-light images, we utilize the spatially variant exposure map [42]
to constrain the exposure of the output x̂0. The loss is formulated as follows:

L1 = ∥Mean (x̂0)−Mean (E)∥22 , (7)

where E denotes the spatially variant exposure map. Specifically, the exposure
map is set with non-uniform exposure values in different regions, e.g., the under-
exposed region is assigned a large exposure value while the overexposed region
is allocated a small exposure value. To achieve the spatially variant exposure
map, we first obtain the luminance channel Y by color space decomposition
(e.g., YCbCr, YUV) and its average value Yavg of a low-light image y0. Then
we calculate the spatially variant condition exposure map by:

E = A×Norm (Y − Yavg) +B, (8)

where B is the base exposure value, A is the adjustment amplitude, and Norm
operation normalizes its input to the range of [−1, 1]. Based on extensive statis-
tics in Fig. 3(a), B and A are empirically set to 0.46 and 0.25, respectively.
Fig. 4(a) presents three outcomes of our method utilizing spatially variant expo-
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Fig. 4: (a) Visualization of the spatially variant exposure maps. Based on Eq. 8, we
automatically assign the underexposed regions large exposure values (light gray) and
wellexposed/overexposed regions small exposure values (dark gray). (b) Visualization
of the phase-only reconstruction image (PCI) in the spatial domain. We applied an
inverse discrete Fourier transform to the phase of the low/normal-light image to obtain
the phase-only reconstruction image. That means the amplitude of low/normal-light
image is set to 1. (c) Visualization of the Retinex decomposition. We employ a pre-
trained decomposition network, RNet, to decompose the input into a reflectance map
R and an illumination map L.

sure maps, where underexposed areas receive higher exposure values and well-
exposed or overexposed areas receive lower ones. Such a spatially variant setting
enables precise exposure adjustments and allows for generating multiple results
at varying exposure levels by adjusting the exposure values.

Structure Guidance Formulation. For constraining the structure of the
output faithful to the degraded image, we minimize the phase error between the
degraded image y0 and the output x̂0:

L2 = ∥P (x̂0)− P (y0)∥
2
2 , (9)

where P(·) indicates the phase in the Fourier domain. In Fig. 4(b), we perform
the inverse discrete Fourier transform to obtain phase-only reconstruction images
in the spatial domain. As observed, the phase-only reconstruction versions of
low-light and normal-light exhibit structural consistency. This is because most
illumination information is expressed as amplitudes, and structural information
is revealed in phases [41]. We find that this simple phase constraint is sufficient
to produce reliable results.

Color Guidance Formulation. According to the Retinex theory [39], a
low-light image can be decomposed into illumination L and reflectance R. As
shown in Fig. 4(c), the reflectance map R represents the physical properties
of the objects, which contain abundant color information. Therefore, we could
guide the color synthesis process with the reflectance map R. Equivalently, the
loss is formulated as follows:

L3 = ∥F (x̂0)−F (y0)∥
2
2 , (10)

where F (·) denotes the pre-trained Retinex-based decomposition network [24],
termed RNet. It takes a low-light image and generates the reflectance map R
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Algorithm 1 Sampling with attribute guidance
Require: A pre-trained diffusion model (µθ(st, t), Σθ(xt, t)), classifier pθ(y|x0),
target y, gradient scale s, the number of gradient steps N and the iteration steps ω
of adding and removing noise.
Input: A low-light image y0

Output: Output image x0

xω ←
√
ᾱty0 +

√
1− ᾱtϵ

for t = ω to 1 do
µt, Σ ← µθ(xt, t), Σθ(xt, t)

x̂0 ← 1√
αt

xt −
√
1−αt
αt

ϵθ(xt, t)

ŝ =
∥xt−xt−1∥2
∥∇x̂0

L∥
2

· s � Dynamic guidance scale

N̂ ← max

(
1,
∥xt−xt−1∥2
∥∇x̂0

L∥
2

·N
)

� Dynamic gradient steps

repeat
xt ← sample from N (µt − ŝΣ∇x̂0 logpθ(y|x̂0), Σ)

x̂0 ← 1√
αt

xt −
√
1−αt
αt

ϵθ(xt, t)

until N̂ − 1 times
xt−1 ← N (µt − ŝΣ∇x̂0 logpθ(y|x̂0), Σ)

end for
return x̂0

and illumination map L. RNet learns adaptive physical-based constraints from
low-light image pairs in a self-supervised manner, significantly reducing the de-
pendence on hand-crafted priors. Such an effective constraint ensures that our
method can generalize well to various exposure scenes, which is why we chose it.

Our attribute guidance controls only the attributes of HQ outputs, and there-
fore composing the classifiers and summing the loss corresponding to each at-
tribute can easily guide the diffusion model to generate HQ results:

L = λ1L1 + λ2L2 + λ3L3, (11)

where λ1, λ2 and λ3 are constants controlling the relative importance of the
different losses, which are empirically set to 1000, 10 and 0.03 in all experiments,
respectively.

Dynamic Guidance Scheme. As illustrated in Fig. 2, given the desired
attributes, we construct the corresponding classifier and apply classifier guidance
during the generative process. Similarly to the external classifier gradient guid-
ance in [22], we evaluate the anti-gradient −∇x̂0

L to bring the attribute-guidance
to the generative process. However, our observations indicate that the
traditional guidance scheme often leads to suboptimal outcomes. Con-
cretely, the traditional guidance scheme, which adpots a constant gradient scale
s, often falls short in guiding the output towards the target value. Additionally, it
executes merely one single gradient step per denoising step, which may not suffi-
ciently steer the output towards the intended target, especially when early-phase
denoising process intermediate outputs are significantly affected by noise. Such
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Table 1: Quantitative comparison on LOLv1 [76], SICE [5] and LOLv2-synthetic [83].
“T”, “S” and “U” represent “Traditional”, “Supervised” and “Unsupervised” methods,
respectively. The best results of “S” and “U” are marked in blue and orange, respectively.

Method Type LOLv1 SICE LOLv2-synthetic

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

SDD [29] T 13.34 0.63 0.74 15.34 0.73 0.26 16.46 0.73 0.35
LECARM [60] T 14.40 0.54 0.32 18.59 0.78 0.26 17.44 0.76 0.37

MBLLEN [52] S 15.25 0.70 0.32 18.41 0.73 0.31 18.16 0.80 0.28
RetinexNet [76] S 17.60 0.64 0.38 19.57 0.78 0.27 17.41 0.67 0.34

DSLR [46] S 15.20 0.59 0.32 14.32 0.68 0.38 15.80 0.72 0.25
DRBN [82] S 19.67 0.82 0.16 18.73 0.78 0.28 21.51 0.82 0.27
DiffLL [34] S 26.19 0.85 0.11 21.33 0.84 0.22 29.46 0.92 0.09
PyDiff [93] S 27.56 0.87 0.10 21.18 0.83 0.23 26.13 0.92 0.08
CUE [92] S 22.67 0.79 0.20 20.06 0.82 0.24 24.47 0.90 0.12

Retinexformer [6] S 25.15 0.84 0.13 22.32 0.85 0.20 25.66 0.95 0.05

EnlightenGAN [35] U 17.48 0.65 0.32 18.73 0.82 0.23 16.79 0.76 0.31
RUAS [48] U 16.40 0.49 0.27 13.21 0.72 0.43 16.31 0.65 0.38
SCI [54] U 14.78 0.52 0.33 15.94 0.78 0.45 18.07 0.77 0.27

PairLIE [24] U 19.46 0.73 0.24 21.23 0.83 0.22 19.12 0.77 0.23
NeRCo [81] U 19.81 0.73 0.24 20.73 0.82 0.23 19.14 0.74 0.26

ZeroDCE [26] U 14.86 0.55 0.33 18.67 0.80 0.26 17.75 0.83 0.16
ZeroDCE++ [43] U 15.32 0.56 0.33 18.65 0.81 0.27 17.55 0.83 0.18

RRDNet [94] U 11.38 0.51 0.36 13.27 0.68 0.32 14.85 0.65 0.24
CLIP-LIT [45] U 12.39 0.49 0.38 13.70 0.73 0.30 16.18 0.79 0.20

GDP [23] U 15.83 0.61 0.34 14.12 0.67 0.31 13.21 0.49 0.36

AGLLDiff (Ours) U 21.81 0.84 0.15 22.12 0.84 0.21 21.11 0.87 0.13

limitations are particularly adverse within LIE tasks that demand high similarity
to the target. To mitigate this issue, we introduce a dynamic guidance scheme
that consists of two distinct components, i.e., the dynamic guidance scale ŝ and
the dynamic gradient steps N̂ at each denoising step. Specifically, we calculate
the ŝ and N̂ based on the magnitude change of the intermediate image [10,65]:

ŝ =
∥xt − xt−1∥2
∥∇x̂0L∥2

· s and N̂ = max

(
1,

∥xt − xt−1∥2
∥∇x̂0L∥2

·N
)
, (12)

where xt−1 ∼ N (µθ, Σθ), s and N are empirically set to 1.8 and 3 in all
experiments, respectively. Such a dynamic guidance scheme affords users the
flexibility to adjust the strength of guidance for attributes as per their unique
requirements, thereby improving overall controllability.

4 Experiments

4.1 Implementation and Datasets

Inference Requirements. The pre-trained diffusion model we employ is a
256 × 256 denoising network trained on the ImageNet dataset [21] provided
by [22]. The total number of iteration steps is defaulted to 1000. We select
the final 10 steps to implement the noise addition and attribute guidance. The
inference process is carried out on the NVIDIA RTX 3090 GPU.
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Table 2: Quantitative comparison on DICM [40], MEF [53], LIME [44], NPE [66]
and VV [64]. “T”, “S” and “U” represent “Traditional”, “Supervised”, “Unsupervised”
methods, respectively. The best results of “S” and “U” are marked in blue and orange,
respectively. BRI. denotes BRISQUE.

Method
DICM MEF LIME NPE VV

NIQE↓ BRI.↓ PI ↓ NIQE↓ BRI.↓ PI ↓ NIQE↓ BRI.↓ PI ↓ NIQE↓ BRI.↓ PI ↓ NIQE↓ BRI.↓ PI ↓

SDD(T) 4.64 31.74 4.18 4.52 38.90 4.12 4.58 29.75 3.84 4.64 37.10 3.72 3.62 23.46 3.42
LECARM (T) 4.24 28.70 4.34 4.54 33.60 4.47 4.92 31.64 4.12 9.61 38.70 5.92 3.68 23.66 3.31

MBLLEN (S) 4.54 36.18 4.15 5.03 38.75 4.38 4.70 32.87 3.84 4.13 30.72 3.48 4.68 43.49 5.06
RetinexNet (S) 4.19 23.42 3.14 4.56 35.91 3.91 5.54 36.58 4.19 4.76 33.51 3.16 5.34 46.80 5.18

DSLR (S) 3.81 26.97 3.57 4.18 27.96 3.84 4.17 24.09 3.34 4.55 33.82 3.40 4.18 30.59 4.44
DRBN (S) 4.25 31.72 4.18 4.18 32.67 3.66 4.42 31.64 3.84 3.61 24.34 3.24 3.75 31.48 4.16
DiffLL (S) 3.70 18.08 3.13 3.46 23.27 2.99 3.60 19.44 3.06 3.46 14.97 2.52 2.75 18.53 3.03
PyDiff (S) 3.98 29.79 3.55 4.12 29.19 3.65 4.58 32.82 3.93 3.66 26.60 2.82 3.74 31.23 4.04
CUE (S) 3.76 17.87 3.32 3.63 25.81 3.21 3.83 16.90 3.08 3.53 19.82 2.75 3.54 21.83 3.96

Retinexformer (S) 3.72 17.22 3.08 3.44 22.01 3.07 3.86 17.41 2.96 3.39 20.51 2.56 2.97 16.24 3.35

EnlightenGAN (U) 3.89 29.23 3.41 3.56 25.31 3.25 4.21 25.34 3.34 3.66 24.10 2.95 3.63 27.79 3.82
RUAS (U) 6.58 45.06 5.22 5.40 41.68 4.57 5.36 31.62 4.34 7.12 46.89 5.61 4.86 34.03 4.24
SCI (U) 4.12 31.64 3.74 3.63 24.57 3.23 4.38 24.85 3.32 4.12 27.31 3.41 5.13 21.45 3.49

PairLIE (U) 4.13 28.59 3.69 4.18 29.54 3.10 4.51 25.21 3.26 4.17 26.22 3.03 3.66 25.88 3.69
NeRCo (U) 3.86 28.34 3.45 3.53 23.22 2.97 3.68 24.49 2.98 3.56 25.21 2.80 3.70 32.18 3.12

ZeroDCE (U) 3.91 24.05 3.13 3.51 26.63 3.13 4.34 26.48 3.21 3.80 22.34 2.92 4.12 25.13 3.33
ZeroDCE++ (U) 3.87 23.40 3.21 3.49 23.59 3.12 4.29 27.24 3.23 3.81 22.60 2.95 3.96 26.11 3.32

RRDNet (U) 3.81 23.95 3.21 3.55 25.92 3.35 4.35 35.23 3.81 3.69 25.51 3.24 3.65 29.37 3.28
CLIP-LIT (U) 3.71 25.78 3.24 3.57 27.72 3.22 3.99 24.41 3.07 3.62 24.14 2.74 3.33 28.66 3.09

GDP (U) 4.08 30.11 3.58 4.10 28.94 3.31 4.65 27.05 3.61 3.72 25.38 3.09 3.61 28.29 3.17

AGLLDiff (U) 3.57 19.13 3.07 3.44 23.21 3.11 3.64 19.13 2.98 3.50 15.13 2.58 3.50 21.13 2.77

Testing Datasets. We construct one synthetic dataset and seven real-world
datasets for testing. The LOLv1 [76] dataset is composed of 500 low-light and
normal-light image pairs and divided into 485 training pairs and 15 testing pairs.
The LOLv2-synthetic [76] dataset is officially divided into two parts, i.e., 900
low-light images for training and 100 low-light images for testing. The SICE
benchmark collects 224 normal-light images and 783 low-light images. Each
normal-light image corresponds to 2∼4 low-light images. We adopt the first
50 normal-light images and the corresponding 150 low-light images for testing,
and the rest (633 low-light images) for training. Moreover, we further assess
our method on five commonly used real-world unpaired benchmarks: LIME [44],
NPE [66], MEF [53], DICM [40], and VV [64]. Notably, we only utilize the test-
ing sets to evaluate our approach. Additionally, unlike some existing methods
such as LLFlow [72] that adjust brightness using reference images, potentially
causing biases, we follow the approaches [24, 41] and compute metrics without
using any reference information to ensure fairness.

Metrics. For the paired datasets, we adopt two distortion-based metrics:
PSNR and SSIM [75] to evaluate the performance of the proposed method, and
also the perceptual-based metric LPIPS [91] to measure the visual quality of the
enhanced results. For the other five unpaired datasets, we use three non-reference
perceptual-based metrics: NIQE [55], BRISQUE [56], and PI [4] for evaluation.
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Fig. 5: Visual comparisons of various LIE methods on SICE. The proposed method
achieves visually pleasing results in terms of brightness, color, contrast, and naturalness.

Fig. 6: Visual comparisons of various LIE methods on MEF. Our method achieves
remarkably higher quality among unsupervised methods with less noise and artifacts.

4.2 Comparison with the State-of-the-Art

For a more comprehensive analysis, we compare our proposed AGLLDiff with
three categories of existing state-of-the-art methods, including: 1) traditional
methods SDD [29] and LECARM [60], 2) supervised approaches MBLLEN [52],
RetinexNet [76], DSLR [46], DRBN [82], DiffLL [34], PyDiff [93], CUE [92] and
Retinexformer [6], and 3) unsupervised methods EnlightenGAN [35], RUAS [48],
SCI [54], PairLIE [24], NeRCo [81], ZeroDCE [26], ZeroDCE++ [43], RRD-
Net [94], CLIP-LIT [45] and GDP [23]. Note that the results of all those methods
are reproduced by using the official codes with recommended parameters. The
metrics are recalculated with the pyiqa [11].

Quantitative Comparisons. Tables 1 and 2 report the quantitative per-
formance of three paired datasets and five unpaired datasets, respectively. The
best results of supervised and unsupervised methods are highlighted in blue
and orange, respectively. Compared with recent competitive unsupervised ap-
proaches, AGLLDiff achieves the most advanced quantitative performance in
terms of distortion-based and perceptual-based metrics across all benchmarks.
Note that AGLLDiff even outperforms partial supervised approaches, which con-
firms the superiority of our solution.
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Fig. 7: Visual and quantitative results of ablation studies on LOL. The full model
achieves the best performance.

Visual Comparisons. For a more comprehensive comparison, we further
provide visual comparisons with leading algorithms in Figs 5 and 6. Our ob-
servations are twofold: 1) the proposed method distinctly surpasses other ap-
proaches in delivering aesthetically superior enhancements in terms of bright-
ness, color fidelity, contrast, and natural appearance, especially under extremely
low-light conditions where others falter; and 2) despite supervised approaches
like Retinexformer, DiffLL, and CUE exhibiting notable efficacy on LOLv1, SICE
and LOLv2-synthetic datasets, their generalization capabilities may be limited
as supervised learning is sensitive to the data distribution. For more visual com-
parisons, please refer to the supplementary material.

4.3 Ablation study

To assess the impact of our approach’s key components: attributes, gradient
scale s, number of gradient steps N , and noise addition iteration steps ω, we
conduct several ablation studies on the LOLv1 dataset [76].

Impact of the attributes. We undertake ablation studies to verify the ef-
fectiveness of the mentioned attributes in Sec. 3.3. Concretely, we have tested the
following three variations over the original setting: (i) without the exposure at-
tribute guidance. (ii) without the structure attribute guidance. (iii) without the
color attribute guidance. (iv) using only the pre-trained diffusion model without
the attribute guidance. Results are shown in Fig. 7. We have the following obser-
vations: 1) The removal of exposure attribute guidance limits users’ control over
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Fig. 8: Ablation studies on the dynamic gradient scale ŝ. The comparison results verify
its effectiveness over the conventional constant guidance scale.
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Fig. 9: Ablation studies on dynamic gradient steps N̂ (a-b) and different iteration
steps ω (c). The blue box in (a-b) is the enhanced result.

exposure adjustments. 2) The lack of structure attribute guidance leads to blur-
ring in the structure. 3) The absence of color attribute guidance causes severe
color distortions, and the objective measures degrade significantly. 4) Without
attribute guidance, relying solely on the pre-trained diffusion model, the LIE
task will gradually degenerate into an unconditional image generation task as
the level of noise added to the input increases. In contrast, our full model yields
clear and natural outputs, validating the efficacy of the introduced attributes.

Effectiveness of Dynamic Guidance Scale. The effectiveness of the dy-
namic guidance scale ŝ is evaluated quantitatively and qualitatively. As illus-
trated in Fig. 8, without the dynamic guidance scale, although plausible results
can be generated, the guidance scale must be manually adjusted for specific
scenes, and the fidelity and clarity of the content cannot be guaranteed. In con-
trast, with the dynamic guidance scale ŝ replacing the constant guidance scale ŝ,
high quality and fidelity results can be robustly delivered. The results highlight
the indispensable role of our dynamic guidance scale in ensuring high fidelity to
the target during the guidance process.

Effectiveness of Dynamic Gradient Steps. The dynamic gradient steps
N̂ serve to adaptively adjust the strength of guiding the output toward the
intended target. As depicted in Fig. 9(a), employing constant gradient steps
yields suboptimal results, either under- or over-enhancement, with artifacts and
noise. Conversely, in Fig. 9(b), artifacts and noise are progressively removed and
finer details are generated. During the early phases of the denoising process, the
N̂ is larger, while in the later stages, N̂ is smaller. Such a phenomenon suggests
that the intermediate outputs are laden with noise in the early phases, and hence
the gradient step should be increased to effectively steer the outputs towards
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the intended target. Whereas in the later phases, the gradient step should be
decreased to produce refined results.

Impact of Iteration Steps. We explore the influence of the iteration steps
ω of adding noise and removing noise. In Fig. 9(c), we perform different num-
bers of iterations on the input to generate multiple noisy image outcomes. One
can see that enlarging the iteration steps yields limited performance gains but
significantly increases the sampling time, especially as the ω exceeds 10. Conse-
quently, we set the ω = 10 for the trade-off between performance and sampling
time.

5 Conclusion and Limitations

This manuscript introduces an Attribute Guidance Diffusion (AGLLDiff) frame-
work to alleviate the challenges in real-world low-light image enhancement (LIE).
AGLLDiff innovatively focuses on modeling desired high-quality image attributes
such as exposure, structure and color, which do not depend on specific assump-
tions about the degradation process. This attribute-based guidance facilitates
the diffusion sampling process towards achieving high-quality image recovery.
Despite outstanding quantitative and qualitative performance achieved in eight
challenging LIE benchmarks, there remain areas for improvement, such as accel-
erating sampling via advanced techniques and exploring more underlying high-
quality attributes. Furthermore, future work will extend the application of this
framework to various restoration challenges.
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