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Abstract. A main challenge faced in the deep learning-based Under-
water Image Enhancement (UIE) is that the ground truth high-quality
image is unavailable. Most of the existing methods first generate approx-
imate reference maps and then train an enhancement network with cer-
tainty. This kind of method fails to handle the ambiguity of the reference
map. In this paper, we resolve UIE into distribution estimation and con-
sensus process. We present a novel probabilistic network to learn the
enhancement distribution of degraded underwater images. Specifically,
we combine conditional variational autoencoder with adaptive instance
normalization to construct the enhancement distribution. After that, we
adopt a consensus process to predict a deterministic result based on a
set of samples from the distribution. By learning the enhancement dis-
tribution, our method can cope with the bias introduced in the reference
map labeling to some extent. Additionally, the consensus process is use-
ful to capture a robust and stable result. We examined the proposed
method on two widely used real-world underwater image enhancement
datasets. Experimental results demonstrate that our approach enables
sampling possible enhancement predictions. Meanwhile, the consensus
estimate yields competitive performance compared with state-of-the-
art UIE methods. Code available at https://github.com/zhenqifu/PUIE-
Net.

Keywords: Underwater image enhancement · Deep learning ·
Probabilistic network · Adaptive instance normalization · Conditional
variational autoencoder

1 Introduction

Underwater images suffer from degradation due to the poor and complex lighting
conditions in the water. The degradation of underwater images is mainly rooted
in the wavelength-dependent light scattering and absorption, which reduces vis-
ibility, decreases contrast, and introduces unpleasant color casts. It is important
and necessary to develop Underwater Image Enhancement (UIE) methods to
adjust the degraded underwater signal so that the results are more suitable
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for display or further analysis. In the past few years, deep learning-based UIE
approaches have enabled tremendous progress. Commonly, this kind of method
adopts corresponding pairs of clean and distorted images to learn a mapping
between two quality levels [14,36,39,59].

UIE is an important low-level vision task. For underwater scenes with adverse
visual conditions, it is difficult and impractical to capture the clean image to train
a deep neural network directly. This is because the degradation of underwater
images is non-reversible and very complex. To solve this problem, previous meth-
ods propose to generate approximate supervisors to train a deep neural network.
For example, in [36] the authors applied several state-of-the-art algorithms to
generate a set of potential reference images and manually select the best one as
the ground truth. Benefiting from the large-scale dataset constructed in previous
works, deep learning-based methods have made profound progress in learning the
mapping from a degraded underwater image to the corresponding high-quality
reference image [34]. Nonetheless, considering the progress of UIE under this
pipeline, we would like to argue that this kind of method fails to capture the
uncertainties in labeling the ground truth.

Although the reference image achieves high visual quality in existing UIE
datasets, it is generated through an approximate approach (e.g., using exiting
UIE algorithms [36]) and may be influenced by various factors, such as human-
specific preference during subjective selection and different algorithm param-
eters. In this case, UIE suffers from uncertainty issues. For ambiguous labels,
directly learning a mapping between the degraded underwater image and cor-
responding reference is inappropriate. There are many potential solutions for
the same degraded underwater image because we cannot confidently know what
a true clean image looks like. Nonetheless, most of the existing deep learning-
based methods treat UIE as a point estimation problem. As a result, they have
to make a compromise between possible solutions because they are following a
deterministic learning pipeline.

In this paper, we propose the first probabilistic network for UIE, termed
PUIE-Net. Instead of directly generating a single prediction (i.e., the point esti-
mation), we are interested in how the network produces multiple results (i.e.,
the distribution estimation) so that the network can handle the uncertainty issue
in UIE. Furthermore, once the distribution is estimated, we can perform a con-
sensus process to capture a deterministic result based on a set of estimations.
In this paper, we introduce two consensus processes to predict the final result
named: Monte Carlo likelihood estimation (MC) [51] and Maximum Probabil-
ity estimation (MP). Specifically, MC is calculated by taking the average of the
likelihoods. While the sample with maximum probability is regarded as the final
result in MP.

The proposed network structure is based on probabilistic adaptive instance
normalization (PAdaIN), which combines conditional variational autoencoder
(CVAE) [48] with adaptive instance normalization (AdaIN) [23] to construct
the enhancement distribution. PAdaIN is motivated by AdaIN that is originally
designed for style transfer. We extend AdaIN into PAdaIN via drawing style
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inputs from two posterior distributions constructed by conditional variational
autoencoders. PAdaIN aims to transform the global enhancement statistics of
input features. Therefore, diverse predictions can be achieved by sampling dif-
ferent enhancement attributes from the latent space. The whole pipeline of our
method is trained following the standard training procedure of the CVAE. We
conduct extensive experiments on two real-world UIE datasets to validate the
effectiveness of our method.

Our main contributions are summarized as follows:

– We resolve UIE into distribution estimation and consensus process to handle
the uncertainty issue in labeling the ground truth.

– We propose the first probabilistic network for UIE, which learns to approxi-
mate the posterior over meaningful appearance. Specifically, the enhancement
distribution is constructed based on conditional variational autoencoder and
adaptive instance normalization.

– We show that our method can generate diverse potential solutions. Besides,
by inferring the consensus prediction based on a set of samples, our method
achieves promising performance compared with state-of-the-art methods on
two UIE datasets.

2 Related Work

2.1 Underwater Image Enhancement

According to the means of the modeling imaging process, the existing UIE meth-
ods can be roughly categorized into the following three types.

The first category is model-free methods, which enhance underwater images
without considering the degradation process. Traditional contrast limited adap-
tive histogram equalization (CLAHE) [44], white balance (WB) [56], and
Retinex [47] belong to this category. In [7], the authors proposed a fusion-based
method for UIE, where the inputs and weight measures are derived only from the
degraded image. An improvement version of [7] is presented in [5], which adopts
a white balancing technique and a novel multi-scale fusion strategy to further
promote the enhancement performance. Fu et al. [16] proposed a retinex-based
UIE approach to enhance a single underwater image. Gao et al. [18] presented a
teleost fish retina-guided underwater image enhancement approach to deal with
the problems of nonuniform color shift and content blurring. Other relevant
works can be found in [6,19].

The second category is prior-based methods, which enhance underwater
images using physical imaging models and focus on accurately estimating the
parameters of the defined physical model. Chiang et al. [12] proposed to enhance
underwater images via a dehazing algorithm. Galdran et al. [17] proposed a vari-
ant of the Dark Channel Prior (DCP) [21] that uses red channel information to
estimate the depth map of underwater images. Li et al. [33] proposed an under-
water image dehazing algorithm and a contrast enhancement method based on
a minimum information loss and histogram distribution prior. Berman et al. [11]
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took into account multiple spectral profiles of different water types, in which the
authors additionally estimated two global parameters, i.e., the attenuation ratios
of the blue-red and blue-green color channels. Akkaynak et al. [3] developed a
UIE method named Sea-thru based on a revised physical imaging model. Sea-
thru takes RGBD images as the input and it first estimates backscatter using
the darkest pixels and their known range map. Then it calculates the attenua-
tion coefficient based on an estimation of the spatially varying illuminant. Other
relevant works of prior-based UIE methods can be found in [2,10,35,42,43].

The third category is deep learning-based methods that automatically
extract representations and learn an enhancement mapping based on numer-
ous paired/unpaired training data. Li et al. [38] first proposed a generative
adversarial network to generate synthetic underwater images in an unsupervised
pipeline. Then the authors trained an enhancement network using these synthetic
data. Li et al. [37] proposed a weakly supervised underwater image enhancement
method that relaxes the need for paired data. Guo et al. [20] enhanced degraded
underwater images using a multi-scale dense generative adversarial network. Li
et al. [35] introduced a lightweight UIE model based on the underwater scene
prior. Li et al. [36] constructed a large scale real-world UIE dataset. The ref-
erence image is generated by 12 existing UIE methods. Besides, based on this
dataset, the authors proposed a gated fusion network for enhancing underwa-
ter images. Jamadandi et al. [25] proposed to enhance underwater images by
augmenting the network with wavelet corrected transformations. To deal with
the challenge of underwater image degradation diversity, Uplavikar et al. [53]
trained a new deep neural network to learn the domain agnostic features for a
given degraded underwater image, where the domain is the Jerlov water type of
the image. Li et al. [34] presented an underwater image enhancement network
called Ucolor by medium transmission-guided multi-color space embedding. Kar
et al. [29] presented a zero-shot underwater and hazing image restoration method
by leveraging a theoretically deduced property of degradation through the phys-
ical model. More relevant works of learning-based UIE methods can be found
in [15,24,26,27,41,46,55,58].

2.2 VAE Based Deep Probabilistic Model

Variational autoencoder (VAE) and its conditional counterpart (CVAE) [48,51]
have been widely used in various computer vision tasks. Rather than building
an encoder that outputs a single value to describe each latent state attribute,
VAE formulates the encoder to describe a probability distribution for each latent
attribute. To train a VAE, a regularizer and a reconstruction loss are needed to
penalize the disagreement of the posterior and prior distributions of the latent
representation.

Despite not being explored to model ambiguities for underwater image
enhancement, VAEs and CVAEs are utilized to sample diverse results from con-
structed posteriors. For example, in [32], the authors use VAEs to model the
image background for salient object detection. In [57], the authors apply VAEs
for learning motion sequence generation. In [30], a probabilistic U-Net based on



Uncertainty Inspired Underwater Image Enhancement 469

VAEs is proposed to learn a conditional distribution of medical image segmenta-
tion. [9] and [31] improve the diversity of samples in [30] via adopting a hierarchy
of latent variables. In [1], a contrastive VAE is introduced which combines the
benefits of contrastive learning with the power of VAEs to identify and enhance
salient latent features. In [45], a VAE based denoising approach is developed by
predicting a whole distribution of denoised images. In [8], the authors employ
VAEs to predict multiple deprojected instances for images/videos collapsed along
a dimension. In [60], the authors employ VAEs for RGB-D saliency detection by
learning from the data labeling process. Other relevant works about VAEs for
diverse solution sampling can be found in [4,13,52]

3 Method

In this section, we will introduce PUIE-Net in detail. PUIE-Net is based on
PAdaIN that learns meaningful distributions of UIE. It is the first time that
employs a probabilistic network to solve the UIE problem.

3.1 Motivation

Ambiguities for UIE. The main idea of PUIE-Net is to introduce ambiguities
for UIE. This is because the true clean image is unavailable and there is a degree
of uncertainties in recording approximate labels. Existing deterministic learning-
guided methods fail to capture such uncertainty and have to make a compromise
between possible results. We consider that as we cannot confidently know which
of the possible clean image has given rise to the distorted underwater image at
hand, estimating the distribution of possible interpretations may be an advisable
solution. We use an implicit variable z to express the uncertainty. Here, z can
be interpreted as human subjective preferences or camera/algorithm parameters
in capturing the ground truth. Let x and y refer to the corrupted observation
and the clean image, respectively. UIE under a probabilistic framework can be
formulated as:

p (y |x ) ≈ 1
S

S∑

s=1

p
(
y

∣∣∣z(s),x
)

, z(s) ∼ p (z |x ) (1)

where p (z |x ) denotes the distribution of uncertainty. S represents the number of
samples. Equation (1) not only allows us to generate multiple enhancement pre-
dictions but also gives a straightforward way to calculate a deterministic result,
i.e., the MC estimation [51] that draws samples using the prior network and
takes the average of the likelihoods. Apart from MC, the Maximum Probability
estimation (MP) is also considered in this paper. MP takes the enhancement
sample with the maximum probability as the final result. Mathematically, MP
can be expressed as:

p (y |x ) ≈ p (y |zmax,x ) , zmax ∼ p (z |x ) (2)

where zmax denotes the sample with the maximum probability.
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PAdaIN for Learning Appearance Distribution. Since the goal of UIE is
to adjust the image appearance such as colors and contrasts, rather than the con-
tent, it is important to capture such information during the enhancement. Here,
we adopt a modified AdaIN [23] to capture such features. AdaIN is originally
developed for style transfer, which can be expressed as:

AdaIN (x,y) = σ(y)
(
x − μ (x)

σ (x)

)
+ μ(y) (3)

where x denotes the features of the content image and y denotes the features of
the style image. μ and σ refer to the mean and standard deviation operations,
respectively. AdaIN changes the appearance by adjusting the mean and standard
deviation of features. We observe that UIE falls into the AdaIN paradigm. How-
ever, AdaIN relies on the known content and style images, it cannot be directly
leveraged for UIE. To handle this problem, we propose PAdaIN, which can be
formulated as:

PAdaIN (x) = b

(
x − μ (x)

σ (x)

)
+ a (4)

where b and a are two random samples from the posterior distributions of the
mean and standard deviation, respectively. Specifically, the posterior distribu-
tions can be learned with CVAEs, which will be detailed in the next subsection.
Note that the proposed PAdaIN can be regarded as a generalized AdaIN.

3.2 Network Structure

The whole pipeline of PUIE-Net is illustrated in Fig. 1. The proposed network
structure contains two branches. Both branches include a U-Net [49] based fea-
ture extractor. Specifically, the top branch aims to estimate the prior distribu-
tion of a single raw underwater image. While the goal of the bottom branch is to
construct posterior distributions of UIE, it takes the raw underwater image and
corresponding reference image as the input. In PUIE-Net, we simply modify the
U-Net by adding SE-ResNet blocks [22]. This is useful to improve the network
capacity of enhancement representations.

The core component of PUIE-Net is the PAdaIN after the feature extractor
to encode the ambiguities. The prior/posterior block (i.e., Pr/Po block in Fig. 1)
is designed to build the distribution of enhancement. We note that both Pr and
Po need to construct a mean and a standard deviation distributions. After that,
embeddings sampled form Pr/Po block are input to the AdaIN to transform
the feature statistics. Let f ∈ RB×C×H×W refers to the data matrix of Pr/Po
block’s input, where B, C, H, W indicate the batch size, number of channels, the
height, and the width, respectively. First, we calculating the mean and standard
deviation of each channel of f . Then, we adopt 1 × 1 convolutions to obtain
μ ∈ RB×N×1×1 and σ ∈ RB×N×1×1 from the mean vector. Similarly, we adopt
1 × 1 convolutions to obtain m ∈ RB×N×1×1 and v ∈ RB×N×1×1 from the stan-
dard deviation vector. Finally, μ and σ are applied to build the N -dimensional
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Fig. 1. The network architecture of PUIE-Net. The feature extractor is based
on U-Net [49] that maps the input to representations. After the feature extractor is the
PAdaIN module, which transforms the enhancement statistics of received deterministic
features. In the training phase, features from the bottom branch are used to calculate
the posterior distribution. Random samples from the posterior distributions are injected
into AdaIN to transform the enhancement representation. In the testing phase,
taking a single degraded image as the input, random samples from the Pr block are
employed to generate the predictions.

Gaussian distribution of the mean (Nm). m and v are applied to build the N -
dimensional Gaussian distribution of the standard deviation (Ns). As the two
distributions are constructed, we extract random samples from them, which can
be expressed as:

a ∼ Nm

(
μ (x) ,σ2 (x)

)
(5)

b ∼ Ns

(
m (x) ,v2 (x)

)
(6)

where a and b are two random samples from the mean and standard deviation
distributions, respectively. Note that, in the testing phase, the latent codes (a
and b) are only dependent on the input image x. While in the training phase
we leverage input image x and corresponding reference image y to learn the
posterior distributions, which will be described in the next subsection.

Random samples a and b are further injected into the AdaIN module to
transform the statistics of received features. Typical AdaIN receives a content
input and a style input, and simply aligns the mean and standard deviation of
the content input to match those of the style input across channels. For UIE,
the style input is unavailable in advance. Therefore, we propose to align the
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mean and standard deviation of received features based on random activations
extracted from the learned distributions.

3.3 Training and Testing

PUIE-Net is trained following the standard training procedure of CVAE, i.e.,
by minimizing the variational lower bound (Eq. 12). The main difference with
respect to training a deterministic enhancement model is that our training pro-
cess additionally needs to find a meaningful embedding of the enhancement
statistics in the latent space. This is addressed by introducing a posterior net-
work (i.e., the bottom branch in Fig. 1), that learns to recognize the posterior
features, and map those to two posterior distributions of the mean and standard
deviation. Samples from the posterior distributions can be formalized as:

a ∼ Nm

(
μ (y,x) ,σ2 (y,x)

)
(7)

b ∼ Ns

(
m (y,x) ,v2 (y,x)

)
(8)

where a and b are two random samples from the mean and standard deviation
posterior distributions, respectively. During the training, random samples a and
b are fed into the AdaIN module to predict the enhanced image. The enhance-
ment loss Le penalizes the differences between the output of PUIE-Net and the
reference. Le is formulated as:

Le = Lmse + λLvgg16 (9)

where Lmse denotes the mean square error loss and Lvgg16 denotes the perceptual
loss explored by [28], λ refers to the weight.

Apart from minimizing the enhancement loss, Kullback-Leibler (KL) diver-
gences are employed to assimilate the posterior distributions and the prior dis-
tributions:

Lm = DKL (Nm (x) ‖Nm (y,x) ) (10)

Ls = DKL (Ns (x) ‖Ns (y,x) ) (11)

where DKL refers to the KL divergence between two distributions. Finally, the
total loss function for training PUIE-Net is the weighted sum of above losses:

L = Le + β(Lm + Ls) (12)

where β is the weight. In the testing phase, we apply the network n times to the
same input image to predict n enhancement variants. Note that only PAdaIN and
the output block need to be re-evaluated. Diverse enhancement solutions provide
users with multiple alternative results for display or analysis. More importantly,
a set of samples provide sufficient inferring data for the consensus process. In this
paper, the default consensus processes are the Monte Carlo likelihood estimation
(MC) and Maximum Probability estimation (MP). MC predicts a final result
via averaging a group of possible samples. MP takes the enhancement sample
with the maximum probability as the final estimation. Equations (1) and (2) in
Sect. 3.1 describe the formulation of MC and MP, receptively.
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Original image Label-2 Lable-3 Lable-4Label-1 (Original)

Fig. 2. Examples of our new UIE dataset. Label 2–4 denote the new labels generated
by contrast adjustment, saturation adjustment, and gamma correction, respectively.

3.4 Training Data Generation

One obstacle before training our probabilistic network is that the existing UIE
dataset generally only provides a single reference map for each degraded under-
water image. To apply the probabilistic network, we re-build the existing UIE
dataset by generating multiple reference images. Our new dataset is based on
UIEBD [36], a real-world UIE dataset that contains 890 underwater images and
corresponding reference maps. In the original UIEBD, the authors utilize 12
state-of-the-art enhancement algorithms to generate the potential ground truth.
With raw underwater images and the 12 enhanced results, the authors invite
volunteers to perform pairwise comparisons and subjectively select the best
one among twelve candidates as the final reference image. Based on UIEBD,
we create ambiguities by performing contrast and saturation adjustment, and
gamma correction. We adopt these methods because the distortions of underwa-
ter images are mainly reflected in contrast, saturation, brightness, and colors.
Note that we aim to generate ambiguous labels rather than significantly alter
the original label. The contrast and saturation adjustment are performed via a
simple linear transformation y = (x − m) × α + x, where x and y refer to the
input and output, m denotes the mean of each channel. α is the adjustment
coefficient. For contrast adjustment, α is the same for all pixels. For saturation
adjustment, α is determined by each pixel itself. To generate a more reliable
reference map, we first create two adjusted versions (i.e., over and under adjust-
ment) per method and then choose the better one as the potential label. As a
result, we obtain four reference maps (including the original label) for each raw
underwater image, which can reflect the uncertainty during the ground truth
recording. We show an example of the new dataset in Fig. 2.

4 Experiments

In this section, we will first show the detailed experimental settings including
training and test datasets, performance criteria, compared methods, and the
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implementation details. Then, we quantitatively and qualitatively evaluate our
method against several state-of-the-art algorithms on two UIE datasets.

4.1 Experiment Settings

Training and Testing Datasets: Two UIE datasets are used for performance
verification. The first one is the new UIEBD dataset that is built in this paper. As
described in Sect. 3.4, we create multiple labels for each raw underwater image.
We use the first 700 original images and corresponding reference images for train-
ing, and the rest for testing. The second dataset is RUIE [39], which only contains
raw underwater images. RUIE is a large-scale underwater dataset that contains
three subsets, including an underwater image quality subset (3630 images), an
underwater color cast subset (300 images), and an underwater higher-level task-
driven subset (300 images). In this paper, we use the underwater image quality
subset for testing since it contains different levels of image quality and various
underwater scenes. Note that our model is trained on UIEBD and tested on both
UIEBD and RUIE.

Performance Criteria: In the case of applying a probabilistic network for UIE,
we not only want to compare a deterministic estimation with a unique reference
image, but also we are interested in the distributions of enhancement. To analyze
the learned distributions, we perform subjective comparisons by visualizing the
latent space. To evaluate the enhancement performance, we adopt SSIM [54],
PSNR, DeltaE (CIE2000 standard) [50], and NIQE [40] to measure the image
quality objectively. SSIM, PSNR, and DeltaE are full-reference metrics calcu-
lated based on the original label in UIEBD for a fair comparison with existing
methods. Note that DeltaE is used for color difference evaluation. NIQE is a
no-reference metric and it does not need reference images. Additionally, we con-
duct subjective tests to understand how users prefer the results generated by
each UIE method. We use Mean Opinion Score (MOS) to quantify the sub-
jective evaluation. 20 participants (10 male and 10 female) are invited to join
the subjective test. Raw and enhanced underwater images are simultaneously
displayed on a screen. The subjective score of each image is rated on a five-
level scale: 5 (excellent), 4 (good), 3 (fair), 2 (poor), and 1 (bad), according
to the following measures: color distortion, contrast enhancement, naturalness
preservation, brightness improvement, and artifacts. We note that since RUIE
only contains raw underwater images, we adopt NIQE and MOS to measure the
model performance.

Compared Methods: We compare PUIE-Net with 9 UIE methods, including
three model-free methods (GC, Retinex [16] and Fusion [7]), three prior-based
methods (IBLA [43], Histogram-Prior [33] and Haze-line [10]), and three deep
learning-based approaches (Water-Net [36], Ucolor [34], and LC-Net [26]). We
record the results of all competitors by conducting the same experiments using
the original implementations provided by the authors for comparison fairness.

Implementation Details: PUIE-Net is implemented in the Pytorch frame-
work and trained on an NVIDIA RTX 2080Ti GPU with ADAM optimizer. The
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(a) Original underwater images

(c) Enhancement samples
u-3σ u-2σ u-1σ u u+1σ u+2σ u+3σ

(b) Sampling
u u+1σ u+2σ u+3σσ3-u σ2-u σ1-u

Fig. 3. Visualization of the enhancement distribution of UIE. We show the original
image in (a). The sampling scheme used for visualization is presented in (b) and the
enhancement samples are shown in (c). μ and σ in (b) denote the mean and standard
deviation of the distribution, respectively.

learning rate is 1 × 10−4, the batch size is 4, and the patch size is 256 × 256.
We augment the training data with rotation, flipping horizontally and vertically
to promote network generalization. The dimension N of the latent space is 20.
We adopt 1 × 1 convolutions to broadcast the samples to the desired number of
channels before input to AdaIN. The parameter λ and β are empirically set as 1.
The default kernel size of convolution layers is 3 × 3 and the number of channels
is 64. The default sampling times for calculating MC estimations are 20.

4.2 Analysis of Enhancement Distribution

Although a lot of UIE algorithms have been developed, PUIE-Net is the first
method that learns the distribution of enhancement and explicitly takes multi-
solution into account. Figure 3 shows the original image and PUIE-Net samples.
We manually control the sampling interval for better visualization. From Fig. 3,
we can make the following observations: 1) Each PUIE-Net sample has a different
but reasonable appearance. Enhanced samples with higher sampling probability
show relatively mild enhancement. Enhanced samples with lower sampling prob-
ability show strong contrast and color adjustment. This demonstrates that our
method can learn the meaningful distribution of UIE and can generate diverse
enhancement predictions. 2) A set of enhanced samples not only provide multiple
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Table 1. Quantitative comparison on UIEBD and RUIE datasets. The best result is
highlighted in red and the second best one is in blue.

Method UIEBD RUIE

PSNR ↑ SSIM ↑ DeltaE ↓ NIQE ↓ MOS ↑ NIQE ↓ MOS ↑
GC 16.14 0.761 16.11 3.789 2.6 4.656 2.4

Retinex [16] 17.53 0.773 14.82 4.074 2.7 4.593 2.5

Fusion [7] 21.18 0.822 9.079 3.747 3.4 4.488 2.9

IBLA [43] 18.51 0.762 18.64 4.290 2.2 4.767 1.9

Histogram-Prior [33] 14.39 0.573 15.69 3.780 2.4 4.486 2.5

Water-Net [36] 19.31 0.830 10.14 3.879 3.3 4.491 3.3

Haze-line [10] 14.97 0.669 17.23 3.830 2.4 4.620 1.8

Ucolor [34] 21.65 0.840 8.646 3.786 3.7 4.755 3.0

LC-Net [26] 18.54 0.812 14.25 3.800 3.3 4.721 2.9

PUIE-Net (MC) 21.86 0.870 9.556 3.626 4.2 4.512 3.7

PUIE-Net (MP) 21.05 0.854 10.26 3.668 4.1 4.555 3.6

alternatives for display or analysis but also offer effective data for the consensus
process to further obtain a robust and stable result. Compared with determinis-
tic learning-based methods which have to make a compromise between possible
results, our method is more flexible and can reduce the influence of biased labels
in the existing UIE dataset.

4.3 Performance Comparison

Table 1 presents the quantitative comparisons on UIEBD and RUIE datasets.
From Table 1, we can perceive that PUIE-Net achieves favorable performance
and outperforms other methods. Specifically, prior-based approaches obtain rel-
atively poor results since this kind of method is highly dependent on the used
prior knowledge and the predefined imaging model. We found that the perfor-
mance of MC is significantly better than the others. This is reasonable since
averaging a set of samples can reduce enhancement bias in the testing phase.
We further present visual comparisons in Fig. 4. As can be seen, although most
of the methods can somehow enhance the contrast, severe visual defects caused
by the unsatisfactory adjustment of colors or artifacts remain. For example,
GC and Retinex show unnatural colors and saturation, smearing image details.
Prior-based methods can improve the contrasts, however, the colors are seriously
degraded in these cases. Water-Net and Ucolor tend to generate over/under-
enhanced results. Our method works well on all these cases and the result looks
more clean and natural with fine-grained textures.

4.4 Impact of Sampling Times

Since we apply the consensus process to obtain a deterministic result, it is nec-
essary to analyze the influence of sampling times. We calculate the standard
deviation of PSNR and SSIM under different sampling times on the UIEBD
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(a) (c) (d) (e) (f) (g) (h) (i) (j)(b)

Fig. 4. Comparisons of visual results on UIEBD and RUIE datasets. (a) Original image.
(b) Retinex. (c) GC. (d) Fusion. (e) IBLA. (f) Histogram-Prior. (g) Water-Net. (h)
Ucolor. (i) PUIE-Net (MC). (j) PUIE-Net (MP).

Table 2. Impact of sampling times.

Sampling times 1 2 4 6 8 10 20 50

Mean std-PSNR 0.726 0.512 0.380 0.326 0.292 0.253 0.175 0.166

Mean std-SSIM 0.008 0.004 0.003 0.003 0.003 0.002 0.002 0.001

dataset. Note that we run the model 10 times to calculate the standard devia-
tion of PSNR and SSIM (i.e., std-PSNR and std-SSIM) for each raw underwater
image. The mean std-PSNR and std-SSIM of all test images are listed in Table 2.
As can be observed, as the number of samples increases, the standard deviation
of PSNR and SSIM first reduces and then becomes stable after 20 sampling
times. This demonstrates that PUIE-Net can capture the diversity of enhanced
images, and the consensus process can estimate a stable result based on mul-
tiple predictions. Note that increasing sampling times can further improve the
stability of final predictions. In this paper, we set the default sampling times of
MC estimation as 20 to better balance the stability and running time.

4.5 Discussion

Consensus Process The key idea of PUIE-Net is to learn the enhance-
ment distribution and employ a consensus process to get the final pre-
diction. Therefore, the effectiveness of the consensus process has a signif-
icant impact on the final results. In this paper, we have designed two
consensus processes i.e., MC and MP. The former estimates an enhanced
image by averaging a group of samples while the latter takes the image
with the highest sampling probability as the final result. We consider that
many other approaches can be applied to get the final result. For exam-
ple, one can perform an image quality assessment method to select the
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best result according to the visual quality. In this case, both subjective and
objective metrics can be used and the enhancement performance is highly depen-
dent on the used evaluation method. Quality based selection can be expressed
as:

p (y |x ) ≈ max
s

Q
(
p

(
y

∣∣∣z(s),x
)

, z(s) ∼ p (z |x )
)

(13)

where Q denotes the subjective/objective image quality assessment function.

Relationship with Unsupervised Method The degradation of underwater
images is non-reversible and complex, it is impracticable to record the ground
truth for training a supervised UIE model directly. Therefore, we consider that
unsupervised methods are more suitable for addressing the UIE problem. In this
paper, instead of concentrating on developing an unsupervised method, we aim
at making full use of the biased labels in existing UIE datasets. Biased reference
maps of real-world underwater images are possible and cheap to obtain [34,
36]. With such reference maps, we proposed to leverage an AadIN module and
a conditional variational autoencoder to learn the enhancement distribution.
Therefore, the goal of both PUIE-Net and unsupervised UIE methods is to
tackle the challenge of learning a UIE model without the ground truth. But
our framework provides a new means to address the UIE problem i.e., resolving
UIE into distribution estimation and consensus process based on biased reference
maps, which is different from the unsupervised methods.

5 Conclusion

In this paper, we introduce PUIE-Net, a novel probabilistic network for under-
water image enhancement. Specifically, we propose to learn the distribution of
enhanced images rather than directly estimate a single result with certainty. This
allows us to handle the label ambiguity issue of underwater image enhancement.
The main idea is to leverage random style attributes from two posterior distri-
butions constructed by conditional variational autoencoders, to transform the
global enhancement statistics of input features. Moreover, with the consensus
process, final enhancement results can be inferred via integrating a set of predic-
tions. We demonstrate that PUIE-Net can effectively produce a set of reasonable
results and the visual quality of the consensus estimation is highly competitive
on two real-world UIE datasets. In the future, we plan to extend our method to
other image enhancement tasks such as low-light image enhancement, dehazing,
and denoising, where the ground truth image is difficult to obtain.
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